

 Navigation

 	
 next

 	Effective Django

Effective Django

Note

There’s new content and tutorials coming!

Sign up [http://eepurl.com/xY1dn] to be notified with Effective
Django is updated.

Note

Video of the tutorial from PyCon [https://www.youtube.com/watch?v=NfsJDPm0X54] is available on YouTube.

Django is a popular, powerful web framework for Python. It has lots of
“batteries” included, and makes it easy to get up and going. But all
of the power means you can write low quality code that still seems to
work. Effective Django development means building applications that
are testable, maintainable, and scalable – not only in terms of
traffic or load, but in terms of being able to add developers to
projects. After reading Effective Django you should have an
understanding of how Django’s pieces fit together, how to use them to
engineer web applications, and where to look to dig deeper.

These documents are a combination of the notes and examples developed
for talks prepared for PyCon 2012, PyOhio 2012, and PyCon 2013, and
for Eventbrite web engineering. I’m still working on fleshing them out
into a single document, but I hope you find them useful.

Feedback, suggestions, and questions may be sent to
nathan@yergler.net. You can find (and fork) the source on github [http://github.com/nyergler/effective-django].

These documents are available in PDF and EPub format, as well.

Contents

	Introduction

	Effective Django Tutorial
	Getting Started

	Using Models

	Writing Views

	Using Static Assets

	Additional Generic Views

	Form Basics

	Related Models

	Handling Authentication & Authorization

	Testing in Django
	Testing Django

	Writing a Unit Test

	Test Client

	Request Factory

	Running Tests

	Further Reading

	Understanding Middleware
	Overview of Middleware

	Middleware Hooks

	Typical Uses

	Middleware Example

	Request Middleware

	Response Middleware

	Writing Your Own

	WSGI Middleware

	Databases & Models
	Configuring the Database

	Writing Models

	Working with Models

	What Goes in Models

	Saving Data

	Managers

	Testing

	Querying Your Data

	ORM Performance

	Class Based Views
	Class Based Views

	Using Class Based Views

	Idiomatic Class Based Views

	HTTP Methods

	Writing Composable Views

	Forms
	Form Basics

	Validation

	Testing

	Rendering Forms

	Forms for Models

	Form Sets

	Advanced & Miscellaneous Detritus

	Acknowledgments

	Further Reading

Everything In Its Right Place

	Views
	Convert Request to Response

	Forms
	Convert input to Python objects

	Models
	Data and business logic

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

Introduction

In the past decade the Python community has seen a wealth of riches
spring up in the area of web development. Frameworks and tools have
made it easier than ever to use Python for web applications, with some
focused on particular domains, others on particular footprints, and
still others on particular deployment strategies. Most of these
frameworks have built upon WSGI [http://www.python.org/dev/peps/pep-0333/], the Web Server Gateway Interface,
which became part of the Python standard library in version TK. WSGI
provides some conventions for applications and servers to communicate
with one another, much as it’s spiritual predecessor, CGI [http://en.wikipedia.org/wiki/Common_Gateway_Interface], provided
conventions for executing scripts via a web server.

With the inclusion of WSGI, it’s possible to begin developing a web
application by simply picking and choosing pieces that seem best for
the task at hand. Indeed, some projects do just that. So why use a
larger framework like Django [http://djangoproject.com/], Pylons [http://www.pylonsproject.org/], or Blue Bream [http://bluebream.zope.org/]? Frameworks
build upon WSGI to provide a reasonable set of defaults, a set of
conventions, for getting started with development and focusing on the
specific problem at hand. It’s possible to spend time evaluating
libraries that map a URL to a view, but a framework’s developers have
already (presumably) done such an evaluation, and chosen one that they
feel will work well with the other parts of the framework. TK:Community

A framework is general purpose by definition, but that doesn’t mean
your use of it must be. Put another way, most frameworks support a
variety of databases, platforms, and deployment infrastructures. But
just because you use that framework doesn’t mean you need to, as well.
A good framework will help you get up to speed more quickly, and will
let you target things for your environment when needed.

Django is a popular, powerful web framework for Python. It has lots of
“batteries” included, and makes it easy to get up and going. But all
of the power means you can write low quality code that still seems to
work. Effective Django development means building applications that
are testable, maintainable, and scalable – not only in terms of
traffic or load, but in terms of being able to add developers to
projects. When we’re talking about Effective Django, we’re really
talking about software engineering for web applications. The examples
and the details we’re going to talk about are Django specific, but the
ideas and principles are not.

So what does Effective Django mean? It means using Django in a way
that emphasizes writing code that’s cohesive, testable, and scalable.
What do each of those words mean? Well “cohesive” code is code that is
focused on doing one thing, and one thing alone. It means that when
you write a function or a method, that it does one thing and does it
well. This is directly related to writing testable code: code that’s
doing too much is often difficult to write tests for. When I find
myself thinking, “Well, this piece of code is just too complex to
write a test for, it’s not really worth all the effort,” that’s a
signal that I need to step back and focus on simplifying it. Testable
code is code that makes it straight-forward to write tests for, and
that’s easy to diagnose problems with. Finally, we want to write
scalable code. That doesn’t just mean it scales in terms of
performance, but that it also scales in terms of your team and your
team’s understanding. Applications that are well tested are easier for
others to understand (and easier for them to modify), which means
you’re more able to improve your application by adding engineers.

Part of being able to effectively use Django is understanding
what’s available to you, and what the restrictions are. Frameworks
are necessarily general purpose tools, which is great: the
abstractions and tools they provide allow us to begin working
immediately, without delving into the details. At some point,
however, it’s useful to understand what the framework is doing for
you. Whether you’re trying to stretch in a way the framework didn’t
imagine, or you’re just trying to diagnose a mysterious bug, you
have to look inside the black box and gain a deeper
understanding. After reading Effective Django you should have an
understanding of how Django’s pieces fit together, how to use them to
engineer web applications, and where to look to dig deeper.

My goal is to convince you of the importance of these principles, and
provide examples of how to follow them to build more robust Django
applications. I’m going to walk through building a contact management
application iteratively, building tests as I go.

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

Effective Django Tutorial

Note

Video of this tutorial [https://www.youtube.com/watch?v=NfsJDPm0X54] from PyCon is available on YouTube.

Django is a popular, powerful web framework for Python. It has lots of
“batteries” included, and makes it easy to get up and going. But all
of the power means you can write low quality code that still seems to
work. So what does Effective Django mean? It means using Django in a
way that emphasizes writing code that’s cohesive, testable, and
scalable. What do each of those words mean?

Well, “cohesive” code is code that is focused on doing one thing, and
one thing alone. It means that when you write a function or a method,
that it does one thing and does it well.

This is directly related to writing testable code: code that’s doing
too much is often difficult to write tests for. When I find myself
thinking, “Well, this piece of code is just too complex to write a
test for, it’s not really worth all the effort,” that’s a signal that
I need to step back and focus on simplifying it. Testable code is code
that makes it straight-forward to write tests for, and that’s easy to
diagnose problems with.

Finally, we want to write scalable code. That doesn’t just mean it
scales in terms of performance, but that it also scales in terms of
your team and your team’s understanding. Applications that are well
tested are easier for others to understand (and easier for them to
modify), which means you’re more able to improve your application by
adding engineers.

My goal is to convince you of the importance of these principles, and
provide examples of how to follow them to build more robust Django
applications. I’m going to walk through building a contact management
application iteratively, talking about the choices and testing
strategy as I go.

The sample code for this tutorial is available in the
effective-django-tutorial [https://github.com/nyergler/effective-django-tutorial/] git repository.

Slides for the tutorial are available at http://effectivedjango.com/slides/tutorial

	Getting Started

	Using Models

	Writing Views

	Using Static Assets

	Additional Generic Views

	Form Basics

	Related Models

	Handling Authentication & Authorization

“Effective Django” is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License [http://creativecommons.org/licenses/by-sa/4.0/].

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

 	Effective Django Tutorial

Getting Started

Your Development Environment

When thinking about your development environment, there are three
important things to keep in mind: isolation, determinism, and
similarity. They’re each important, and they work in concert with one
another.

Isolation means that you’re not inadvertently leveraging tools
or packages installed outside the environment. This is particularly
important when it comes to something like Python packages with C
extensions: if you’re using something installed at the system level
and don’t know it, you can find that when you go to deploy or share
your code that it doesn’t operate the way you expect. A tool like
virtualenv [http://www.virtualenv.org/] can help create that sort of environment.

Your environment is deterministic if you’re confident about
what versions of your dependencies you’re relying on, and can
reproduce that environment reliably.

Finally, similarity to your production or deployment
environment means you’re running on the same OS, preferably the
same release, and that you’re using the same tools to configure
your development environment that you use to configure your
deployment environment. This is by no means a requirement, but as
you build bigger, more complex software, it’s helpful to be
confident that any problem you see in production is reproducable in
your development environment, and limit the scope of investigation
to code you wrote.

Isolation

	We want to avoid using unknown dependencies, or unknown versions

	virtualenv [http://www.virtualenv.org/] provides an easy way to work on a project without your
system’s site-packages

Determinism

	Determinism is all about dependency management

	Choose a tool, use it in development and production
	pip, specifically a requirements files [http://www.pip-installer.org/en/latest/requirements.html]

	buildout [http://www.buildout.org/]

	install_requires [http://pythonhosted.org/distribute/setuptools.html#declaring-dependencies] in setup.py

	Identify specific versions of dependencies

You can specify versions either by the version for a package on
PyPI, or a specific revision (SHA in git, revision number in
Subversion, etc). This ensures that you’re getting the exact
version you’re testing with.

Similarity

	Working in an environment similar to where you deploy eliminates
variables when trying to diagnose an issue

	If you’re building something that requires additional services, this
becomes even more important.

	Vagrant [http://vagrantup.com/] is a tool for managing virtual machines, lets you easily
create an environment separate from your day to day work.

Setting Up Your Environment

Create a Clean Workspace

$ mkdir tutorial
$ virtualenv ./tutorial/
New python executable in ./tutorial/bin/python
Installing setuptools............done.
Installing pip...............done.
$ source ./tutorial/bin/activate
(tutorial)$

Start a Requirements File

Create a requirements.txt in the tutorial directory with a
single requirement in it.

Django==1.5.1

Installing Requirements

And then we can use pip [http://www.pip-installer.org/] to install the dependencies.

(tutorial)$ pip install -U -r requirements.txt

Downloading/unpacking Django==1.5.1
 Downloading Django-1.5.1.tar.gz (8.0MB): 8.0MB downloaded
 Running setup.py egg_info for package Django

 warning: no previously-included files matching '__pycache__' found under directory '*'
 warning: no previously-included files matching '*.py[co]' found under directory '*'
Installing collected packages: Django
 Running setup.py install for Django
 changing mode of build/scripts-2.7/django-admin.py from 644 to 755

 warning: no previously-included files matching '__pycache__' found under directory '*'
 warning: no previously-included files matching '*.py[co]' found under directory '*'
 changing mode of /home/nathan/p/edt/bin/django-admin.py to 755
Successfully installed Django
Cleaning up...

Beginning a Django Project

When a building is under construction, scaffolding is often used to
support the structure before it’s complete. The scaffolding can be
temporary, or it can serve as part of the foundation for the
building, but regardless it provides some support when you’re just
starting out.

Django, like many web frameworks, provides scaffolding for your
development efforts. It does this by making decisions and providing
a starting point for your code that lets you focus on the problem
you’re trying to solve, and not how to parse an HTTP request.
Django provides HTTP, as well as file system scaffolding.

The HTTP scaffolding handles things like parsing an HTTP request
into a Python object and providing tools to easily create a
response. The file system scaffolding is a little different: it’s a
set of conventions for organizing your code. These conventions make
it easier to add engineers to a project, since they
(hypothetically) have some idea how the code is organized. In
Django parlance, a project is the final product, and it
assembles one or more applications together. Django 1.4 made a
change to the way the projects and applications are laid out on
disk [https://docs.djangoproject.com/en/1.5/releases/1.4/#updated-default-project-layout-and-manage-py], which makes it easier to decouple and reuse applications
between projects.

Creating the Project

Django installs a django-admin.py script for handling scaffolding
tasks. We’ll use startproject to create the project files. We
specify the project name and the directory to start in; we’re already
in our isolated environment so we can just say .

(tutorial)$ django-admin.py startproject addressbook .

manage.py
./addressbook
 __init__.py
 settings.py
 urls.py
 wsgi.py

Project Scaffolding

	manage.py is a pointer back to django-admin.py with an
environment variable set, pointing to your project as the one to
read settings from and operate on when needed.

	settings.py is where you’ll configure your project. It has a
few sensible defaults, but no database chosen when you start.

	urls.py contains the URL to view mappings: we’ll talk more about
that shortly.

	wsgi.py is a WSGI [https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface] wrapper for your application. This is used
by Django’s development servers, and possibly other containers
like mod_wsgi, uwsgi, etc. in production.

Creating the “App”

(tutorial)$ python ./manage.py startapp contacts

./addressbook
./contacts
 __init__.py
 models.py
 tests.py
 views.py

	Beginning in Django 1.4, apps are placed alongside project
packages. This is a great improvement when it comes to
deployment.

	models.py will contain the Django ORM models for your app.

	views.py will contain the View code

	tests.py will contain the unit and integration tests you
write.

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

 	Effective Django Tutorial

Using Models

Configuring the Database

Django includes support out of the box for MySQL, PostgreSQL, SQLite3,
and Oracle. SQLite3 [http://docs.python.org/2/library/sqlite3.html] is included with Python starting with version
2.5, so we’ll use it for our project for simplicity. If you were going
to use MySQL, for example, you’d need to add mysql-python [https://pypi.python.org/pypi/MySQL-python] to your
requirements.txt file.

To enable SQLite as the database, edit the DATABASES definition in
addressbook/settings.py. The settings.py file contains the
Django configuration for our project. There are some settings that you
must specify – like the DATABASES configuration – and others
that are optional. Django fills in some defaults when it generates the
project scaffolding, and the documentation contains a full list of
settings [https://docs.djangoproject.com/en/1.5/ref/settings/]. You can also add your own settings here, if needed.

For SQLite we need to set the engine and then give it a name. The
SQLite backend uses the NAME as the filename for the database.

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3', # 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'.
 'NAME': 'address.db',
 'USER': '', # Not used with sqlite3.
 'PASSWORD': '', # Not used with sqlite3.
 'HOST': '', # Set to empty string for localhost. Not used with sqlite3.
 'PORT': '', # Set to empty string for default. Not used with sqlite3.
 }
}

Note that the database engine is specified as a string, and not a
direct reference to the Python object. This is because the settings
file needs to be easily importable, without triggering any side
effects. You should avoid adding imports to the settings file.

You rarely need to import the settings file directly; Django imports
it for you, and makes it available as django.conf.settings. You
typically import your settings from django.conf:

from django.conf import settings

Creating a Model

Django models map (roughly) to a database table, and provide a place
to encapsulate business logic. All models subclass the base Model [https://docs.djangoproject.com/en/1.5/ref/models/instances/#django.db.models.Model]
class, and contain field definitions. Let’s start by creating a simple
Contact model for our application in contacts/models.py.

from django.db import models

class Contact(models.Model):

 first_name = models.CharField(
 max_length=255,
)
 last_name = models.CharField(
 max_length=255,

)

 email = models.EmailField()

 def __str__(self):

 return ' '.join([
 self.first_name,
 self.last_name,
])

Django provides a set of fields [https://docs.djangoproject.com/en/1.5/ref/models/fields/] that map to data types and different
validation rules. For example, the EmailField here maps to the
same column type as the CharField, but adds validation for the
data.

Once you’ve created a model, you need to update your database with the
new tables. Django’s syncdb command looks for models that are
installed and creates tables for them if needed.

(tutorial)$ python ./manage.py syncdb

Creating tables ...
Creating table auth_permission
Creating table auth_group_permissions
Creating table auth_group
Creating table auth_user_user_permissions
Creating table auth_user_groups
Creating table auth_user
Creating table django_content_type
Creating table django_session
Creating table django_site

...

Our contact table isn’t anywhere to be seen. The reason is that we
need to tell the Project to use the Application.

The INSTALLED_APPS setting lists the applications that the project
uses. These are listed as strings that map to Python packages. Django
will import each and looks for a models module there. Add our
Contacts app to the project’s INSTALLED_APPS setting:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 # Uncomment the next line to enable the admin:
 # 'django.contrib.admin',
 # Uncomment the next line to enable admin documentation:
 # 'django.contrib.admindocs',
 'contacts',
)

Then run syncdb again:

(tutorial)$ python ./manage.py syncdb
Creating tables ...
Creating table contacts_contact
Installing custom SQL ...
Installing indexes ...
Installed 0 object(s) from 0 fixture(s)

Note that Django created a table named contacts_contact: by
default Django will name your tables using a combination of the
application name and model name. You can override that with the
model Meta [https://docs.djangoproject.com/en/1.5/ref/models/options/] options.

Interacting with the Model

Now that the model has been synced to the database we can interact
with it using the interactive shell.

(tutorial)$ python ./manage.py shell
Python 2.7.3 (default, Aug 9 2012, 17:23:57)
[GCC 4.7.1 20120720 (Red Hat 4.7.1-5)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from contacts.models import Contact
>>> Contact.objects.all()
[]
>>> Contact.objects.create(first_name='Nathan', last_name='Yergler')
<Contact: Nathan Yergler>
>>> Contact.objects.all()
[<Contact: Nathan Yergler>]
>>> nathan = Contact.objects.get(first_name='Nathan')
>>> nathan
<Contact: Nathan Yergler>
>>> print nathan
Nathan Yergler
>>> nathan.id
1

There are a few new things here. First, the manage.py shell
command gives us a interactive shell with the Python path set up
correctly for Django. If you try to run Python and just import your
application, an Exception will be raised because Django doesn’t know
which settings to use, and therefore can’t map Model instances to
the database.

Second, there’s this objects property on our model class. That’s
the model’s Manager [https://docs.djangoproject.com/en/1.5/topics/db/managers/]. If a single instance of a Model is analogous to
a row in the database, the Manager is analogous to the table. The
default model manager provides querying functionality, and can be
customized. When we call all() or filter() or the Manager, a
QuerySet is returned. A QuerySet is iterable, and loads data from the
database as needed.

Finally, there’s this id field that we didn’t define. Django adds
an id field as the primary key for your model, unless you specify
a primary key [https://docs.djangoproject.com/en/1.5/topics/db/models/#automatic-primary-key-fields].

Writing a Test

We have one method defined on our model, __str__, and this is a
good time to start writing tests. The __str__ method of a model
will get used in quite a few places, and it’s entirely conceivable
it’d be exposed to end users. It’s worth writing a test so we
understand how we expect it to operate. Django creates a tests.py
file when it creates the application, so we’ll add our first test to
that file in the contacts app.

from contacts.models import Contact
...
class ContactTests(TestCase):
 """Contact model tests."""

 def test_str(self):

 contact = Contact(first_name='John', last_name='Smith')

 self.assertEquals(
 str(contact),
 'John Smith',
)

You can run the tests for your application using manage.py:

(tutorial)$ python manage.py test

If you run this now, you’ll see that around 420 tests run. That’s
surprising, since we’ve only written one. That’s because by default
Django runs the tests for all installed applications. When we added
the contacts app to our project, there were several Django apps
there by default. The extra 419 tests come from those.

If you want to run the tests for a specific app, just specify the app
name on the command line:

(tutorial)$ python manage.py test contacts
Creating test database for alias 'default'...
..
--
Ran 2 tests in 0.000s

OK
Destroying test database for alias 'default'...
$

One other interesting thing to note before moving on is the first and
last line of output: “Creating test database” and “Destroying test
database”. Some tests need access to a database, and because we don’t
want to mingle test data with “real” data (for a variety of reasons,
not the least of which is determinism), Django helpfully creates a
test database for us before running the tests. Essentially it creates
a new database, and runs syncdb on it. If you subclass from
Django’s TestCase (which we are), Django also resets any default
data after running each TestCase, so that changes in one test won’t
break or influence another.

Review

	Models define the fields in a table, and can contain business logic.

	The syncdb manage command creates the tables in your database from
models

	The model Manager allows you to operate on the collection of
instances: querying, creating, etc.

	Write unit tests for methods you add to the model

	The test manage command runs the unit tests

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

 	Effective Django Tutorial

Writing Views

View Basics

Django Views take an HTTP Request [https://docs.djangoproject.com/en/1.5/ref/request-response/#httprequest-objects] and return an HTTP Response [https://docs.djangoproject.com/en/1.5/ref/request-response/#httpresponse-objects] to
the user.

Any Python callable can be a view. The only hard and fast requirement
is that it takes the request object (customarily named request) as
its first argument. This means that a minimalist view is super
simple:

from django.http import HttpResponse

def hello_world(request):
 return HttpResponse("Hello, World")

Of course, like most frameworks, Django also allows you to pass
arguments to the view from the URL. We’ll cover this as we build up
our application.

Generic & Class Based Views

	Generic Views [https://docs.djangoproject.com/en/1.5/topics/class-based-views/generic-display/] have always provided some basic functionality:
render a template, redirect, create or edit a model, etc.

	Django 1.3 introduced Class Based Views [https://docs.djangoproject.com/en/1.5/topics/class-based-views/] (CBV) for the generic views

	Provide higher levels of abstraction and composability

	Also hide a lot of complexity, which can be confusing for the
newcomer

	Luckily the documentation is much better with Django 1.5

Django 1.3 introduced class based views, which is what we’ll be
focusing on here. Class based views, or CBVs, can eliminate a lot of
boilerplate from your views, especially for things like an edit view
where you want to take different action on a GET vs POST. They
give you a lot of power to compose functionality from pieces. The
downside is that this power comes with some added complexity.

Class Based Views

The minimal class based view subclasses View [https://docs.djangoproject.com/en/1.5/ref/class-based-views/base/#view] and implements methods
for the HTTP methods it supports. Here’s the class-based version of
the minimalist “Hello, World” view we previously wrote.

from django.http import HttpResponse
from django.views.generic import View

class MyView(View):

 def get(self, request, *args, **kwargs):
 return HttpResponse("Hello, World")

In a class based view, HTTP methods map to class method names. In this
case, we’ve defined a handler for GET requests with the get
method. Just like the function implementation, it takes request as
its first argument, and returns an HTTP Response.

Permissive Signatures

You may notice that it has a couple of extra arguments in its
signature, compared to the view we saw previously, specifically
*args and **kwargs. Class based views were first introduced
as a way to make Django’s “generic” views more flexible. That meant
they were used in many different contexts, with potentially
different arguments extracted from the URLs. As I’ve been writing
class based views over the past year, I’ve continued to write them
with permissive signatures, as I’ve found they’re often useful in
ways I didn’t initially expect.

Listing Contacts

We’ll start with a view that presents a list of contacts in the
database.

The basic view implementation is shockingly brief. We can write the
view in just a few lines in the views.py file in our contacts
application.

from django.views.generic import ListView

from contacts.models import Contact

class ListContactView(ListView):

 model = Contact

The ListView [https://docs.djangoproject.com/en/1.5/ref/class-based-views/generic-display/#listview] that we subclass from is itself composed of several
mixins that provide some behavior, and that composition gives us a lot
of power without a lot of code. In this case we set model =
Contact, which says that this view is going to list all the
Contacts in our database.

Defining URLs

The URL configuration tells Django how to match a request’s path to
your Python code. Django looks for the URL configuration, defined as
urlpatterns, in the urls.py file in your project.

Let’s add a URL mapping for our contact list view in
addressbook/urls.py.

from django.conf.urls import patterns, include, url

import contacts.views

urlpatterns = patterns('',
 url(r'^$', contacts.views.ListContactView.as_view(),
 name='contacts-list',),
)

	Use of the url() function is not strictly required, but I like
it: when you start adding more information to the URL pattern, it
lets you use named parameters, making everything more clear.

	The first parameter is a regular expression. Note the trailing
$; why might that be important?

	The second parameter is the view callable. It can either be the
actual callable (imported manually), or a string describing it. If
it’s a string, Django will import the module (up to the final dot),
and then calls the final segment when a request matches.

	Note that when we’re using a class based view, we must use the
real object here, and not the string notation. That’s because we
have to call the class method as_view(), which returns a wrapper
around our class that Django’s URL dispatch can call.

	Giving a URL pattern a name allows you to do a reverse lookup

	The URL name is useful when linking from one View to another, or
redirecting, as it allows you to manage your URL structure in one
place

While the urlpatterns name must be defined, Django also allows
you to define a few other values in the URL configuration for
exceptional cases. These include handler403, handler404, and
handler500, which tell Django what view to use when an HTTP error
occurs. See the Django urlconf documentation [https://docs.djangoproject.com/en/1.5/ref/urls/#handler403] for details.

URL Configuration Import Errors

Django loads the URL configuration very early during startup, and
will attempt to import things it finds here. If one of the imports
fails, however, the error message can be somewhat opaque. If your
project stops working with an import-related exception, try to
import the URL configuration in the interactive shell. That usually
makes it clear where the problem lies.

Creating the Template

Now that we’ve defined a URL for our list view, we can try it out.
Django includes a server suitable for development purposes that you
can use to easily test your project:

$ python manage.py runserver
Validating models...

0 errors found
Django version 1.4.3, using settings 'addressbook.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

If you visit the http://localhost:8000/ in your browser, though,
you’ll see an error: TemplateDoesNotExist.

[image: ../_images/TemplateDoesNotExist.png]
Most of Django’s generic views (such as ListView which we’re
using) have a predefined template name that they expect to find. We
can see in this error message that this view was expecting to find
contact_list.html, which is derived from the model name. Let’s go
and create that.

By default Django will look for templates in applications, as well as
in directories you specify in settings.TEMPLATE_DIRS. The generic
views expect that the templates will be found in a directory named
after the application (in this case contacts), and the filename
will contain the model name (in this case contact_list.html). This
works very well when you’re distributing a reusable application: the
consumer can create templates that override the defaults, and they’re
clearly stored in a directory associated with the application.

For our purposes, however, we don’t need that extra layer of directory
structure, so we’ll specify the template to use explicitly, using the
template_name property. Let’s add that one line to views.py.

from django.views.generic import ListView

from contacts.models import Contact

class ListContactView(ListView):

 model = Contact
 template_name = 'contact_list.html'

Create a templates subdirectory in our contacts application,
and create contact_list.html there.

<h1>Contacts</h1>

 {% for contact in object_list %}
 <li class="contact">{{ contact }}
 {% endfor %}

Opening the page in the browser, we should see one contact there, the
one we added earlier through the interactive shell.

Creating Contacts

Adding information to the database through the interactive shell is
going to get old fast, so let’s create a view for adding a new
contact.

Just like the list view, we’ll use one of Django’s generic views. In
views.py, we can add the new view:

from django.core.urlresolvers import reverse
from django.views.generic import CreateView
...
class CreateContactView(CreateView):

 model = Contact
 template_name = 'edit_contact.html'

 def get_success_url(self):
 return reverse('contacts-list')

Most generic views that do form processing have the concept of the
“success URL”: where to redirect the user when the form is
successfully submitted. The form processing views all adhere to the
practice of POST-redirect-GET for submitting changes, so that
refreshing the final page won’t result in form re-submission. You can
either define this as a class property, or override the
get_success_url() method, as we’re doing here. In this case we’re
using the reverse function to calculate the URL of the contact
list.

Context Variables in Class Based Views

The collection of values available to a template when it’s rendered
is referred to as the Context. The Context is a combination of
information supplied by the view and information from context
processors [https://docs.djangoproject.com/en/1.5/ref/templates/api/#subclassing-context-requestcontext].

When you’re using built in generic views, it’s not obvious what
values are available to the context. With some practice you’ll
discover they’re pretty consistent – form, object, and
object_list are often used – but that doesn’t help when you’re
just starting off. Luckily, the documentation for this is much
improved with Django 1.5.

In class based views, the get_context_data() method is used to
add information to the context. If you override this method, you
usually want to accept **kwargs, and call the super class.

The template is slightly more involved than the list template, but not
much. Our edit_contact.html will look something like this.

<h1>Add Contact</h1>

<form action="{% url "contacts-new" %}" method="POST">
 {% csrf_token %}

 {{ form.as_ul }}

 <input id="save_contact" type="submit" value="Save" />
</form>

back to list

A few things to note:

	The form in the context is the Django Form [https://docs.djangoproject.com/en/1.5/topics/forms/] for our model.
Since we didn’t specify one, Django made one for us. How thoughtful.

	If we just write {{ form }} we’ll get table rows; adding
.as_ul formats the inputs for an unordered list. Try .as_p
instead to see what you get.

	When we output the form, it only includes our fields, not the
surrounding <form> tag or the submit button, so we have to add
those.

	The {% csrf_token %} tag inserts a hidden input that Django uses
to verify that the request came from your project, and isn’t a
forged cross-site request. Try omitting it: you can still access the
page, but when you go to submit the form, you’ll get an error.

	We’re using the url template tag to generate the link back to
the contact list. Note that contacts-list is the name of our
view from the URL configuration. By using url instead of an
explicit path, we don’t have to worry about a link breaking. url
in templates is equivalent to reverse in Python code.

You can configure the URL by adding the following line to our
urls.py file:

url(r'^new$', contacts.views.CreateContactView.as_view(),
 name='contacts-new',),

Now you can go to http://localhost:8000/new to create new contacts.

To complete the story, let’s add a link to contact_list.html.

<h1>Contacts</h1>

 {% for contact in object_list %}
 <li class="contact">{{ contact }}
 {% endfor %}

add contact

Testing Your Views

So far our views have been pretty minimal: they leverage Django’s
generic views, and contain very little of our own code or logic. One
perspective is that this is how it should be: a view takes a request,
and returns a response, delegating the issue of validating input to
forms, and business logic to model methods. This is a perspective that
I subscribe to. The less logic contained in views, the better.

However, there is code in views that should be tested, either by unit
tests or integration tests. The distinction is important: unit tests
are focused on testing a single unit of functionality. When you’re
writing a unit test, the assumption is that everything else has its
own tests and is working properly. Integration tests attempt to test
the system from end to end, so you can ensure that the points of
integration are functioning properly. Most systems have both.

Django has two tools that are helpful for writing unit tests for
views: the Test Client [https://docs.djangoproject.com/en/1.5/topics/testing/overview/#module-django.test.client] and the RequestFactory [https://docs.djangoproject.com/en/1.5/topics/testing/advanced/#django.test.client.RequestFactory]. They have similar
APIs, but approach things differently. The TestClient takes a URL
to retrieve, and resolves it against your project’s URL configuration.
It then creates a test request, and passes that request through your
view, returning the Response. The fact that it requires you to specify
the URL ties your test to the URL configuration of your project.

The RequestFactory has the same API: you specify the URL you want
to retrieve and any parameters or form data. But it doesn’t actually
resolve that URL: it just returns the Request object. You can then
manually pass it to your view and test the result.

In practice, RequestFactory tests are usually somewhat faster than the
TestClient. This isn’t a big deal when you have five tests, but it is
when you have 500 or 5,000. Let’s look at the same test written with
each tool.

from django.test.client import Client
from django.test.client import RequestFactory
...
from contacts.views import ListContactView
...
class ContactListViewTests(TestCase):
 """Contact list view tests."""

 def test_contacts_in_the_context(self):

 client = Client()
 response = client.get('/')

 self.assertEquals(list(response.context['object_list']), [])

 Contact.objects.create(first_name='foo', last_name='bar')
 response = client.get('/')
 self.assertEquals(response.context['object_list'].count(), 1)

 def test_contacts_in_the_context_request_factory(self):

 factory = RequestFactory()
 request = factory.get('/')

 response = ListContactView.as_view()(request)

 self.assertEquals(list(response.context_data['object_list']), [])

 Contact.objects.create(first_name='foo', last_name='bar')
 response = ListContactView.as_view()(request)
 self.assertEquals(response.context_data['object_list'].count(), 1)

Integration Tests

Django 1.4 adds a new TestCase base class, the
LiveServerTestCase [https://docs.djangoproject.com/en/1.5/topics/testing/overview/#liveservertestcase]. This is very much what it sounds like: a test
case that runs against a live server. By default Django will start the
development server for you when it runs these tests, but they can also
be run against another server.

Selenium [http://seleniumhq.org/] is a tool for writing tests that drive a web browser, and
that’s what we’ll use for our integration tests. By using Selenium,
you’re able to automate different browers (Chrome, Firefox, etc), and
interact with your full application much as the user would. Before
writing tests to use it, we’ll need to install the Python implementation.

(tutorial)$ pip install selenium

We’re going to write a couple of tests for our views:

	one that creates a Contact and makes sure it’s listed

	one that makes sure our “add contact” link is visible and linked on
the list page

	and one that actually exercises the add contact form, filling it in
and submitting it.

from django.test import LiveServerTestCase
from selenium.webdriver.firefox.webdriver import WebDriver
...
class ContactListIntegrationTests(LiveServerTestCase):

 @classmethod
 def setUpClass(cls):
 cls.selenium = WebDriver()
 super(ContactListIntegrationTests, cls).setUpClass()

 @classmethod
 def tearDownClass(cls):
 cls.selenium.quit()
 super(ContactListIntegrationTests, cls).tearDownClass()

 def test_contact_listed(self):

 # create a test contact
 Contact.objects.create(first_name='foo', last_name='bar')

 # make sure it's listed as <first> <last> on the list
 self.selenium.get('%s%s' % (self.live_server_url, '/'))
 self.assertEqual(
 self.selenium.find_elements_by_css_selector('.contact')[0].text,
 'foo bar'
)

 def test_add_contact_linked(self):

 self.selenium.get('%s%s' % (self.live_server_url, '/'))
 self.assert_(
 self.selenium.find_element_by_link_text('add contact')
)

 def test_add_contact(self):

 self.selenium.get('%s%s' % (self.live_server_url, '/'))
 self.selenium.find_element_by_link_text('add contact').click()

 self.selenium.find_element_by_id('id_first_name').send_keys('test')
 self.selenium.find_element_by_id('id_last_name').send_keys('contact')
 self.selenium.find_element_by_id('id_email').send_keys('test@example.com')

 self.selenium.find_element_by_id("save_contact").click()
 self.assertEqual(
 self.selenium.find_elements_by_css_selector('.contact')[-1].text,
 'test contact'
)

Note that Selenium allows us to find elements in the page, inspect
their state, click them, and send keystrokes. In short, it’s like
we’re controlling the browser. In fact, if you run the tests now,
you’ll see a browser open when the tests run.

In our example we’re using CSS Selectors to locate elements in the
DOM, but you can also use Xpath. For many people it’s a matter of
preference, but I’ve found that using CSS Selectors is often less
brittle: if I change the markup, I’m likely to leave classes on
important elements in place, even if their relative position in the
DOM changes.

Review

	Views take an HttpRequest [https://docs.djangoproject.com/en/1.5/ref/request-response/#httprequest-objects] and turn it into an HttpResponse [https://docs.djangoproject.com/en/1.5/ref/request-response/#httpresponse-objects]

	Generic class-based views introduced with Django 1.3

	These let you create reusable, composable views

	URLs are defined in urls.py in your project

	Naming URLs lets you calculate the URL to a view

	RequestFactory [https://docs.djangoproject.com/en/1.5/topics/testing/advanced/#django.test.client.RequestFactory] creates Requests for testing Views
with

	LiveServerTestCase [https://docs.djangoproject.com/en/1.5/topics/testing/overview/#liveservertestcase] provides basis for writing integration tests

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

 	Effective Django Tutorial

Using Static Assets

Now that we have a basic application where we can add contacts and
list them, it’s reasonable to think about how we’d make this look more
appealing. Most modern web applications are a combination of server
side code/views, and client side, static assets, such as JavaScript
and CSS. Regardless of whether you choose JavaScript or CoffeeScript,
CSS or SASS, Django provides support for integrating static assets
into your project.

Adding Static Files

Django distinguishes between “static” and “media” files. The former
are static assets included with your app or project. The latter are
files uploaded by users using one of the file storage backends. Django
includes a contrib app, django.contrib.staticfiles for managing
static files and, importantly, generating the URLs to them. You could,
of course, simply hard code the URLs to your static assets, and that’d
probably work for a while. But if you want to move your static assets
to their own server, or to a CDN, using generated URLs let’s you make
that change without needing to update your templates.
django.contrib.staticfiles is enabled by default when you create a
new project, so you can just start using it.

We’re going to add Bootstrap [http://getbootstrap.com] to our project for some basic styling.
You can download the Bootstrap files from its website,
http://getbootstrap.com.

Django supports adding static files at both the application and
project level. Where you add them sort of depends on how tied to your
specific assembly of apps they are. That is, are they reusable for
anyone using your app, or are they specific to your particular
deployment?

App specific static files are stored in the static subdirectory
within the app. Django will also look in any directories listed in the
STATICFILES_DIRS setting. Let’s update our project settings to
specify a static files directory.

import os.path
...
Additional locations of static files
STATICFILES_DIRS = (
 # Put strings here, like "/home/html/static" or "C:/www/django/static".
 # Always use forward slashes, even on Windows.
 # Don't forget to use absolute paths, not relative paths.
 os.path.join(
 os.path.dirname(__file__),
 'static',
),
)

Note that we use os.path to construct the absolute path. This
ensures Django can locate the files unambiguously.

Let’s go ahead and create the static directory in our project and
unpack Bootstrap into it.

(tutorial)$ mkdir addressbook/static
(tutorial)$ cd addressbook/static
(tutorial)$ unzip ~/Downloads/bootstrap.zip
Archive: /Users/nathan/Downloads/bootstrap.zip
 creating: bootstrap/
 creating: bootstrap/css/
 inflating: bootstrap/css/bootstrap-responsive.css
 inflating: bootstrap/css/bootstrap-responsive.min.css
 inflating: bootstrap/css/bootstrap.css
 inflating: bootstrap/css/bootstrap.min.css
 creating: bootstrap/img/
 inflating: bootstrap/img/glyphicons-halflings-white.png
 inflating: bootstrap/img/glyphicons-halflings.png
 creating: bootstrap/js/
 inflating: bootstrap/js/bootstrap.js
 inflating: bootstrap/js/bootstrap.min.js

Referring to Static Files in Templates

The Django staticfiles app includes a template tag [https://docs.djangoproject.com/en/1.5/ref/templates/builtins/] that make it
easy to refer to static files within your templates. You load template
tag libraries using the load tag.

{% load staticfiles %}

After loading the static files library, you can refer to the file
using the static tag.

<link href="{% static 'bootstrap/css/bootstrap.min.css' %}"
 rel="stylesheet" media="screen">

Note that the path we specify is relative to the static files
directory. Django is going to join this path with the STATIC_URL
setting to generate the actual URL to use.

The STATIC_URL setting [https://docs.djangoproject.com/en/1.5/ref/settings/#std:setting-STATIC_URL] tells Django what the root URL for your
static files is. By default it’s set to /static/.

Simple Template Inclusion

We want to add the Boostrap CSS to all of our templates, but we’d like
to avoid repeating ourself: if we add it to each template
individually, when we want to make changes (for example, to add
another stylesheet) we have to make them to all the files. To solve
this, we’ll create a base template that the others will inherit from.

Let’s create base.html in the templates directory of our
contacts app.

{% load staticfiles %}
<html>
 <head>
 <link href="{% static 'bootstrap/css/bootstrap.min.css' %}"
 rel="stylesheet" media="screen">
 </head>

 <body>
 {% block content %}
 {% endblock %}

 <script src="{% static 'bootstrap/js/bootstrap.min.js' %}"></script>
 </body>
</html>

base.html defines the common structure for our pages, and includes
a block tag, which other templates can fill in.

We’ll update contact_list.html to extend from base.html and
fill in the content block.

{% extends "base.html" %}

{% block content %}
<h1>Contacts</h1>

 {% for contact in object_list %}
 <li class="contact">{{ contact }}
 {% endfor %}

add contact
{% endblock %}

Serving Static Files

We’ve told Django where we store our static files, and we’ve told it
what URL structure to use, but we haven’t actually connected the two
together. Django doesn’t serve static files by default, and for good
reason: using an application server to serve static resources is going
to be ineffecient, at best. The Django documentation on deploying
static files [https://docs.djangoproject.com/en/1.5/howto/static-files/deployment/] does a good job of walking through the options for
getting your static files onto your CDN or static file server.

For development, however, it’s convenient to do it all with one
process, so there’s a helper. We’ll update our addressbook/urls.py
file to include the staticfiles_urlpatterns helper.

from django.conf.urls import patterns, include, url
from django.contrib.staticfiles.urls import staticfiles_urlpatterns

import contacts.views

urlpatterns = patterns('',
 url(r'^$', contacts.views.ListContactView.as_view(),
 name='contacts-list',),
 url(r'^new$', contacts.views.CreateContactView.as_view(),
 name='contacts-new',),
)

urlpatterns += staticfiles_urlpatterns()

Now we can run the server and see our newly Boostrapped templates in
action.

[image: ../_images/boostrapped.png]

Review

	Django distinguishes between static site files, and user uploaded
media

	The staticfiles app is included to help manage static files and
serve them during development

	Static files can be included with apps, or with the project. Choose
where you put them based on whether you expect all users of your app
to need them.

	Templates can extend one another, using block tags.

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

 	Effective Django Tutorial

Additional Generic Views

Edit Views

In addition to creating Contacts, we’ll of course want to edit them.
As with the List and Create views, Django has a generic view we can
use as a starting point.

from django.views.generic import UpdateView
...
class UpdateContactView(UpdateView):

 model = Contact
 template_name = 'edit_contact.html'

 def get_success_url(self):
 return reverse('contacts-list')

	we can re-use the same template

	but how does it know which contact to load?

	we need to either: provide a pk/slug, or override get_object().

	we’ll provide pk in the URL

 url(r'^edit/(?P<pk>\d+)/$', contacts.views.UpdateContactView.as_view(),
 name='contacts-edit',),

We’ll update the contact list to include an edit link next to each
contact.

{% extends "base.html" %}

{% block content %}
<h1>Contacts</h1>

 {% for contact in object_list %}
 <li class="contact">{{ contact }}
 (edit)

 {% endfor %}

add contact
{% endblock %}

Note the use of pk=contact.id in the {% url %} tag to specify
the arguments to fill into the URL pattern.

If you run the server now, you’ll see an edit link. Go ahead and click
it, and try to make a change. You’ll notice that instead of editing
the existing record, it creates a new one. Sad face.

If we look at the source of the edit HTML, we can easily see the
reason: the form targets /new, not our edit URL. To fix this –
and still allow re-using the template – we’re going to add some
information to the template context.

The template context is the information available to a template when
it’s rendered. This is a combination of information you provide in
your view – either directly or indirectly – and information added by
context processors [https://docs.djangoproject.com/en/1.5/ref/templates/api/#subclassing-context-requestcontext], such as the location for static media and
current locale. In order to use the same template for add and edit,
we’ll add information about where the form should redirect to the
context.

class CreateContactView(CreateView):

 model = Contact
 template_name = 'edit_contact.html'

 def get_success_url(self):
 return reverse('contacts-list')

 def get_context_data(self, **kwargs):

 context = super(CreateContactView, self).get_context_data(**kwargs)
 context['action'] = reverse('contacts-new')

 return context

class UpdateContactView(UpdateView):

 model = Contact
 template_name = 'edit_contact.html'

 def get_success_url(self):
 return reverse('contacts-list')

 def get_context_data(self, **kwargs):

 context = super(UpdateContactView, self).get_context_data(**kwargs)
 context['action'] = reverse('contacts-edit',
 kwargs={'pk': self.get_object().id})

 return context

We also update the template to use that value for the action and
change the title based on whether or not we’ve previously saved.

{% if contact.id %}
<h1>Edit Contact</h1>
{% else %}
<h1>Add Contact</h1>
{% endif %}

<form action="{{ action }}" method="POST">

You may wonder where the contact value in the contact comes from:
the class based views that wrap a single object (those that take
a primary key or slug) expose that to the context in two different
ways: as a variable named object, and as a variable named after
the model class. The latter often makes your templates easier to read
and understand later. You can customize this name by overriding
get_context_object_name on your view.

Made a Change? Run the Tests.

We’ve just made a change to our CreateContactView, which means
this is a perfect time to run the tests we wrote. Do they still pass?
If not, did we introduce a bug, or did the behavior change in a way
that we expected?

(Hint: We changed how the contact list is rendered, so our tests
that just expect the name there are going to fail. This is a case
where you’d need to update the test case, but it also demonstrates
how integration tests can be fragile.)

Deleting Contacts

The final view for our basic set of views is delete. The generic
deletion view is very similar to the edit view: it wraps a single
object and requires that you provide a URL to redirect to on success.
When it processes a HTTP GET request, it displays a confirmation page,
and when it receives an HTTP DELETE or POST, it deletes the object and
redirects to the success URL.

We add the view definition to views.py:

from django.views.generic import DeleteView
...
class DeleteContactView(DeleteView):

 model = Contact
 template_name = 'delete_contact.html'

 def get_success_url(self):
 return reverse('contacts-list')

And create the template, delete_contact.html, in our templates
directory.

{% extends "base.html" %}

{% block content %}

<h1>Delete Contact</h1>

<p>Are you sure you want to delete the contact {{ contact }}?</p>

<form action="{% url "contacts-delete" pk=contact.id %}" method="POST">
 {% csrf_token %}

 <input type="submit" value="Yes, delete." />
 No, cancel.
</form>

{% endblock %}

Of course we need to add this to the URL definitions:

 url(r'^delete/(?P<pk>\d+)/$', contacts.views.DeleteContactView.as_view(),
 name='contacts-delete',),

And we’ll add the link to delete to the edit page.

{% if contact.id %}
Delete
{% endif %}

Detail View

Finally, let’s go ahead and add a detail view for our Contacts. This
will show the details of the Contact: not much right now, but we’ll
build on this shortly. Django includes a generic DetailView: think
of it as the single serving ListView.

from django.views.generic import DetailView
...
class ContactView(DetailView):

 model = Contact
 template_name = 'contact.html'

Again, the template is pretty straight forward; we create
contact.html in the templates directory.

{% extends "base.html" %}

{% block content %}

<h1>{{ contact }}</h1>

<p>Email: {{ contact.email }}</p>

{% endblock %}

And add the URL mapping:

 url(r'^(?P<pk>\d+)/$', contacts.views.ContactView.as_view(),
 name='contacts-view',),

We’re also going to add a method to our Contact model,
get_absolute_url. get_absolute_url is a Django convention for
obtaining the URL of a single model instance. In this case it’s just
going to be a call to reverse, but by providing this method, our
model will play nicely with other parts of Django.

class Contact(models.Model):
...
 def get_absolute_url(self):

 return reverse('contacts-view', kwargs={'pk': self.id})

And we’ll add the link to the contact from the contact list.

 {% for contact in object_list %}
 <li class="contact">
 {{ contact }}
 (edit)

 {% endfor %}

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

 	Effective Django Tutorial

Form Basics

Up until this point we’ve been using forms without really needing to
be aware of it. A Django Form [https://docs.djangoproject.com/en/1.5/topics/forms/] is responsible for taking some user
input, validating it, and turning it into Python objects. They also
have some handy rendering methods, but I consider those sugar: the
real power is in making sure that input from your users is what it
says it is.

The Generic Views [https://docs.djangoproject.com/en/1.5/topics/class-based-views/], specifically the ones we’ve been using, all
operate on a particular model. Django is able to take the model
definition that we’ve created and extrapolate a Form from it. Django
can do this because both Models and Forms are constructed of fields
that have a particular type and particular validation rules. Models
use those fields to map data to types that your database understands;
Forms use them to map input to Python types [1]. Forms that map to a
particular Model are called ModelForms [https://docs.djangoproject.com/en/1.5/topics/forms/modelforms]; you can think of them as
taking user input and transforming it into an instance of a Model.

	[1]	While I’m referring to them both as fields, they’re really
completely different implementations. But the analogy holds.

Adding Fields to the Form

So what if we want to add a field to our form? Say, we want to require
confirmation of the email address. In that case we can create a new
form, and override the default used by our views.

First, in the contacts app directory, we’ll create a new file,
forms.py.

from django import forms
from django.core.exceptions import ValidationError

from contacts.models import Contact

class ContactForm(forms.ModelForm):

 confirm_email = forms.EmailField(
 label="Confirm email",
 required=True,
)

 class Meta:
 model = Contact

 def __init__(self, *args, **kwargs):

 if kwargs.get('instance'):
 email = kwargs['instance'].email
 kwargs.setdefault('initial', {})['confirm_email'] = email

 return super(ContactForm, self).__init__(*args, **kwargs)

Here we’re creating a new ModelForm; we associate the form with
our model in the Meta inner class.

We’re also adding an additional field, confirm_email. This is an
example of a field declaration in a model. The first argument is the
label, and then there are additional keyword arguments; in this case,
we simply mark it required.

Finally, in the constructor we mutate the initial kwarg.
initial is a dictionary of values that will be used as the default
values for an unbound form [https://docs.djangoproject.com/en/1.5/ref/forms/api/#ref-forms-api-bound-unbound]. Model Forms have another kwarg,
instance, that holds the instance we’re editing.

Overriding the Default Form

We’ve defined a form with the extra field, but we still need to tell
our view to use it. You can do this in a couple of ways, but the
simplest is to set the form_class property on the View class.
We’ll add that property to our CreateContactView and
UpdateContactView in views.py.

import forms
...
class CreateContactView(CreateView):

 model = Contact
 template_name = 'edit_contact.html'
 form_class = forms.ContactForm

class UpdateContactView(UpdateView):

 model = Contact
 template_name = 'edit_contact.html'
 form_class = forms.ContactForm

If we fire up the server and visit the edit or create pages, we’ll see
the additional field. We can see that it’s required, but there’s no
validation that the two fields match. To support that we’ll need to
add some custom validation to the Form.

Customizing Validation

Forms have two different phases of validation: field and form. All the
fields are validated and converted to Python objects (if possible)
before form validation begins.

Field validation takes place for an individual field: things like
minimum and maximum length, making sure it looks like a URL, and date
range validation are all examples of field validation. Django doesn’t
guarantee that field validation happens in any order, so you can’t
count on other fields being available for comparison during this
phase.

Form validation, on the other hand, happens after all fields have been
validated and converted to Python objects, and gives you the
opportunity to do things like make sure passwords match, or in this
case, email addresses.

Form validation takes place in a form’s clean() method.

class ContactForm(forms.ModelForm):
...
 def clean(self):

 if (self.cleaned_data.get('email') !=
 self.cleaned_data.get('confirm_email')):

 raise ValidationError(
 "Email addresses must match."
)

 return self.cleaned_data

When you enter the clean method, all of the fields that validated
are available in the cleaned_data dictionary. The clean method
may add, remove, or modify values, but must return the dictionary
of cleaned data. clean may also raise a ValidationError if it
encounters an error. This will be available as part of the forms’
errors property, and is shown by default when you render the form.

Note that I said cleaned_data contains all the fields that
validated. That’s because form-level validation always happens,
even if no fields were successfully validated. That’s why in the clean
method we use cleaned_data.get('email') instead of
cleaned_data['email'].

If you visit the create or update views now, we’ll see an extra field
there. Try to make a change, or create a contact, without entering the
email address twice.

Controlling Form Rendering

Our templates until now look pretty magical when it comes to forms:
the extent of our HTML tags has been something like:

<form action="{{ action }}" method="POST">
 {% csrf_token %}

 {{ form.as_ul }}

 <input type="submit" value="Save" />
</form>

We’re living at the whim of form.as_ul, and it’s likely we want
something different.

Forms have three pre-baked output formats: as_ul, as_p, and
as_table. If as_ul outputs the form elements as the items in
an unordered list, it’s not too mysterious what as_p and
as_table do.

Often, though, you need more control. For those cases, you can take
full control. First, a form is iterable; try replacing your call to
{{form.as_ul}} with this:

{% for field in form %}
{{ field }}
{% endfor %}

As you can see, field renders as the input for each field in the
form. When you iterate over a Form, you’re iterating over a sequence
of BoundField [https://docs.djangoproject.com/en/1.5/ref/forms/api/#django.forms.BoundField] objects. A BoundField wraps the field definition
from your Form (or derived from the ModelForm) along with any data and
error state it may be bound to. This means it has some properties that
are handy for customizing rendering.

In addition to supporting iteration, you can access an individual
BoundField directly, treating the Form like a dictionary:

{{ form.email }}

Dictionary!?!

That may not look like a dictionary access, but remember that Django
templates are quite restrictive in their syntax. Writing foo.bar
will look for a property bar on foo, and if it’s callable,
call it. If it doesn’t find a property, it’ll map that to something
like foo['bar']. So when it comes to writing Django templates,
dictionary elements act just like properties.

Consider the following alternative to edit_contact.html.

{% extends "base.html" %}

{% block content %}

{% if contact.id %}
<h1>Edit Contact</h1>
{% else %}
<h1>Add Contact</h1>
{% endif %}

<form action="{{ action }}" method="POST">
 {% csrf_token %}
 {% if form.non_field_errors %}

 {% for error in form.non_field_errors %}
 {{ error }}
 {% endfor %}

 {% endif %}
 {% for field in form %}
 <div id="{{ field.auto_id }}_container">
 {{ field.help_text }}
 <div>
 {{ field.label_tag }} {{ field }}
 </div>
 <div id="{{ field.auto_id }}_errors">
 {{ field.errors }}
 </div>
 </div>
 {% endfor %}

 <input id="save_contact" type="submit" value="Save" />
</form>

{% if contact.id %}

 Edit Addresses

Delete
{% endif %}

back to list

{% endblock %}

In this example we see a few different things at work:

	field.auto_id to get the automatically generated field ID

	Combining that ID with _container and _errors to give our
related elements names that consistently match

	Using field.label_tag to generate the label. label_tag adds
the appropriate for property to the tag, too. For the
last_name field, this looks like:

<label for="id_last_name">Last name</label>

	Using field.errors to show the errors in a specific place. The
Django Form documentation has details on further customizing how
errors are displayed [https://docs.djangoproject.com/en/1.5/ref/forms/api/#how-errors-are-displayed].

	Finally, field.help_text. You can specify a help_text
keyword argument to each field when creating your form, which is
accessible here. Defining that text in the Form definition is
desirable because you can easily mark it up for translation.

Testing Forms

It’s easy to imagine how you’d use the LiveServerTestCase to write
an integration test for a Form. But that wouldn’t just be testing the
Form, that’d be testing the View, the URL configuration, and probably
the Model (in this case, at least). We’ve built some custom logic into
our form’s validator, and it’s important to test that and that alone.
Integration tests are invaluable, but when they fail there’s more than
one suspect. I like tests that fail with a single suspect.

Writing unit tests for a Form usually means crafting some dictionary
of form data that meets the starting condition for your test. Some
Forms can be complex or long, so we can use a helper to generate the
starting point from the Form’s initial data.

Rebar is a collection of utilities for working with Forms. We’ll
install Rebar so we can use the testing utilities.

(tutorial)$ pip install rebar

Then we can write a unit test that tests two cases: success (email
addresses match) and failure (they do not).

from rebar.testing import flatten_to_dict
from contacts import forms
...
class EditContactFormTests(TestCase):

 def test_mismatch_email_is_invalid(self):

 form_data = flatten_to_dict(forms.ContactForm())
 form_data['first_name'] = 'Foo'
 form_data['last_name'] = 'Bar'
 form_data['email'] = 'foo@example.com'
 form_data['confirm_email'] = 'bar@example.com'

 bound_form = forms.ContactForm(data=form_data)
 self.assertFalse(bound_form.is_valid())

 def test_same_email_is_valid(self):

 form_data = flatten_to_dict(forms.ContactForm())
 form_data['first_name'] = 'Foo'
 form_data['last_name'] = 'Bar'
 form_data['email'] = 'foo@example.com'
 form_data['confirm_email'] = 'foo@example.com'

 bound_form = forms.ContactForm(data=form_data)
 self.assert_(bound_form.is_valid())

An interesting thing to note here is the use of the is_valid()
method. We could just as easily introspect the errors property
that we used in our template above, but in this case we just need a
Boolean answer: is the form valid, or not? Note that we do need to
provide a first and last name, as well, since those are required
fields.

Review

	Forms take user input, validate it, and convert it to Python objects

	Forms are composed of Fields, just like Models

	Fields have validation built in

	You can customize per-field validation, as well as form validation

	If you need to compare fields to one another, you need to implement
the clean method

	Forms are iterable over, and support dictionary-like access to, the
bound fields

	A Bound Field has properties and methods for performing fine-grained
customization of rendering.

	Forms are unit testable; Rebar has some utilities to help with
testing large forms.

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

 	Effective Django Tutorial

Related Models

Adding Relationships

We have a basic email address book at this point, but there’s other
information we might want to track for our contacts. Mailing
addresses, for example. A single Contact may have multiple addresses
associated with them, so we’ll store this in a separate table,
allowing us to have multiple addresses for each Contact.

class Address(models.Model):

 contact = models.ForeignKey(Contact)
 address_type = models.CharField(
 max_length=10,
)

 address = models.CharField(
 max_length=255,
)
 city = models.CharField(
 max_length=255,
)
 state = models.CharField(
 max_length=2,
)
 postal_code = models.CharField(
 max_length=20,
)

 class Meta:
 unique_together = ('contact', 'address_type',)

Django provides three types of fields for relating objects to each
other: ForeignKey for creating one to many relationships,
ManyToManyField for relating many to many, and OneToOneField
for creating a one to one relationship. You define the relationship in
one model, but it’s accessible from the other side, as well.

Sync up the database to create the table, and then start the shell so
we can explore this.

(tutorial)$ python manage.py syncdb
Creating tables ...
Creating table contacts_address
Installing custom SQL ...
Installing indexes ...
Installed 0 object(s) from 0 fixture(s)

Now that we have the model created, we can again play with it using
the interactive shell.

(tutorial)$ python manage.py shell
Python 2.7.3 (default, Aug 9 2012, 17:23:57)
[GCC 4.7.1 20120720 (Red Hat 4.7.1-5)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from contacts.models import Contact, Address
>>> nathan = Contact.objects.create(first_name='Nathan', email='nathan@yergler.net')
>>> nathan.address_set.all()
[]
>>> nathan.address_set.create(address_type='home',
... city='San Francisco', state='CA', postal_code='94107')
<Address: Address object>
>>> nathan.address_set.create(address_type='college',
... address='354 S. Grant St.', city='West Lafayette', state='IN',
... postal_code='47906')
<Address: Address object>
>>> nathan.address_set.all()
[<Address: Address object>, <Address: Address object>]
>>> nathan.address_set.filter(address_type='college')
<Address: Address object>
>>> Address.objects.filter(contact__first_name='Nathan')
[<Address: Address object>, <Address: Address object>]

As you can see, even though we defined the relationship between
Contacts and Addresses on the Address model, Django gives us a way to
access things in the reverse direction. We can also use the double
underscore notation to filter Addresses or Contacts based on the
related objects.

Let’s go ahead and add address display to our contacts. We’ll add the
list of all Addresses to the Contact detail view in contact.html.

{% extends "base.html" %}

{% block content %}

<h1>{{ contact }}</h1>

<p>Email: {{ contact.email }}</p>

{% for address in contact.address_set.all %}
 {{ address.address }}

 {{ address.city }} {{ address.state }}

 {{ address.postal_code }}

{% endfor %}

{% endblock %}

Editing Related Objects

So how do we go about editing addresses for our contacts? You can
imagine creating another CreateView like we did for Contacts, but the
question remains: how do we wire the new Address to our Contact? We
could conceivably just pass the Contact’s ID through the the HTML, but
we’d still need to validate that it hadn’t been tampered with when we
go to create the Address.

To deal with this, we’ll create a form that understands the
relationship between Contacts and Addresses.

The editing interface we’re going to build for Addresses is one that
allows you to edit all the addresses for a Contact at once. To do
this, we’ll need to create a FormSet [https://docs.djangoproject.com/en/1.5/topics/forms/formsets/] that handles all the Addresses
for a single Contact. A FormSet is an object that manages multiple
copies of the same Form (or ModelForm) in a single page. The Inline
FormSet [https://docs.djangoproject.com/en/1.5/topics/forms/modelforms/#inline-formsets] does this for a set of objects (in this case Addresses) that
share a common related object (in this case the Contact).

Because formsets are somewhat complex objects, Django provides factory
functions that create the class for you. We’ll add a call to the
factory to our forms.py file.

from django.forms.models import inlineformset_factory

from contacts.models import (
 Contact,
 Address,
)

inlineformset_factory creates a Class from a parent model (Contact)
to a child model (Address)
ContactAddressFormSet = inlineformset_factory(
 Contact,
 Address,
)

When we create the view, we’ll need to specify that this is the form
we want to use, instead of having Django create one for us.

class EditContactAddressView(UpdateView):

 model = Contact
 template_name = 'edit_addresses.html'
 form_class = forms.ContactAddressFormSet

 def get_success_url(self):

 # redirect to the Contact view.
 return self.get_object().get_absolute_url()

Note that even though we’re editing Addresses with this view, we still
have model set to Contact. This is because an inline formset
takes the parent object as its starting point.

Once again, this needs to be wired up into the URL configuration.

 url(r'^edit/(?P<pk>\d+)/addresses$', contacts.views.EditContactAddressView.as_view(),
 name='contacts-edit-addresses',),

And we have a simple template.

{% extends "base.html" %}

{% block content %}

<h1>Edit Addresses</h1>

<p>Editing addresses for {{ contact }}</p>

<form action="{% url "contacts-edit-addresses" pk=contact.id %}"
 method="POST">
 {% csrf_token %}
 {{ form.management_form }}
 {% for address_form in form %}

 {{ address_form.as_ul }}

 {% endfor %}

 <input type="submit" value="Save" />
</form>

{% endblock %}

There are two new things in this template, both related to the fact
we’re using a formset instead of a form. First, there’s a reference to
form.management_form. This is a set of hidden fields that provide
some accounting information to Django: how many forms did we start
with, how many empty ones are there, etc. If Django can’t find this
information when you POST the form, it will raise an exception.

Second, we’re iterating over form instead of just outputting it (for
address_form in form). Again, this is because form here is a
formset instead of a single form. When you iterate over a formset,
you’re iterating over the individual forms in it. These individual
forms are just “normal” ModelForm instances for each Address, so
you can apply the same output techniques you would normally use.

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

 	Effective Django Tutorial

Handling Authentication & Authorization

Warning

This page is a work in progress; errors may exist, and additional
content is forthcoming.

So far we’ve built a simple contact manager, and added support for a
related model (Addresses). This has shown how to use many of the
basics, but there are a few more things you’d want before exposing
this to the outside world. One of those is authentication and
authorization. Django includes support that works for many projects,
which is what we’ll use.

Authentication

In order to use the included authentication support, the
django.contrib.auth and django.contrib.sessions applications
needs to be included in your project.

Django enables thes by default when you create a project, as you can
see in addressbook/settings.py.

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 # Uncomment the next line to enable the admin:
 # 'django.contrib.admin',
 # Uncomment the next line to enable admin documentation:
 # 'django.contrib.admindocs',
 'contacts',
)

In addition to installing the application, the middleware needs to be
installed, as well.

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 # Uncomment the next line for simple clickjacking protection:
 # 'django.middleware.clickjacking.XFrameOptionsMiddleware',
)

If you’ll recall, during the first run of syncdb, Django asked if
we wanted to create a superuser account. It did so because we had the
application installed already.

The stock Django auth model supports Users [https://docs.djangoproject.com/en/1.6/topics/auth/default/#user-objects], Groups [https://docs.djangoproject.com/en/1.6/topics/auth/default/#groups], and
Permissions [https://docs.djangoproject.com/en/1.6/topics/auth/default/#permissions-and-authorization]. This is usually sufficient unless you’re integrating
with an existing authentication backend.

django.contrib.auth provides a set of views to support the basic
authentication actions such as login, logout, password reset, etc.
Note that it includes views, but not templates. We’ll need to
provide those for our project.

For this example we’ll just add support for login and logout views in
our project. First, add the views to addressbook/urls.py.

urlpatterns = patterns('',
 url(r'^login/$', 'django.contrib.auth.views.login'),
 url(r'^logout/$', 'django.contrib.auth.views.logout'),

Both the login [https://docs.djangoproject.com/en/1.6/topics/auth/default/#django.contrib.auth.views.login] and logout [https://docs.djangoproject.com/en/1.6/topics/auth/default/#django.contrib.auth.views.login] view have default template names
(registration/login.html and registration/logged_out.html,
respectively). Because these views are specific to our project and not
our re-usable Contacts application, we’ll create a new
templates/registration directory inside of addressbook:

$ mkdir -p addressbook/templates/registration

And tell Django to look in that directory for templates by setting
TEMPLATE_DIRS in addressbook/settings.py.

TEMPLATE_DIRS = (
 # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates".
 # Always use forward slashes, even on Windows.
 # Don't forget to use absolute paths, not relative paths.
 'addressbook/templates',
)

Within that directory, first create login.html.

{% extends "base.html" %}

{% block content %}

{% if form.errors %}
<p>Your username and password didn't match. Please try again.</p>
{% endif %}

<form method="post" action="{% url 'django.contrib.auth.views.login' %}">
{% csrf_token %}
<table>
<tr>
 <td>{{ form.username.label_tag }}</td>
 <td>{{ form.username }}</td>
</tr>
<tr>
 <td>{{ form.password.label_tag }}</td>
 <td>{{ form.password }}</td>
</tr>
</table>

<input type="submit" value="login" />
<input type="hidden" name="next" value="{{ next }}" />
</form>

{% endblock %}

The login template inherits from our base.html template, and shows
the login form provided by the view. The hidden next field allows
the view to redirect the user to the page requested, if the login
request was triggered by a permission failure.

Why no name for the URL patterns?

XXX

The logout template, logged_out.html, is simpler.

{% extends "base.html" %}

{% block content %}

Logged out!

{% endblock %}

All it needs to do is provide a message to let the user know the
logout was successful.

Creating an Admin User

XXX

If you run your development server now using runserver and visit
http://localhost:8000/login, you’ll see the login page. If you
login with bogus credentials, you should see an error message. So
let’s try logging in with the super user credential you created earlier.

[image: ../_images/authz-login-pagenotfound.png]
Wait, what? Why is it visiitng /accounts/profile? We never typed
that. The login view wants to redirect the user to a fixed URL after a
successful login, and the default is /accounts/profile. To
override that, we’ll set the LOGIN_REDIRECT_URL value in
addressbook/settings.py so that once a user logs in they’ll be
redirected to the list of contacts.

LOGIN_REDIRECT_URL = '/'

Now that we can log in and log out, it’d be nice to show the logged in
user in the header and links to login/logout in the header. We’ll add
that to our base.html template, since we want that to show up
everywhere.

 <body>
 <div>
 {{ user }}
 {% if user.is_anonymous %}
 login
 {% else %}
 logout
 {% endif %}
 </div>

Authorization

Having support for login and logout is nice, but we’re not actually
using it right now. So we want to first make our Contact views only
available to authenticated users, and then we’ll go on to associated
contacts with specific Users, so the application could be used for
multiple users.

Django includes a suite a functions and decorators that help you guard
a view based on authentication/authorization. One of the most commonly
used is login_required [https://docs.djangoproject.com/en/1.5/topics/auth/default/#django.contrib.auth.decorators.login_required]. Unfortunately, applying view decorators to
class based views remains a little cumbersome [https://docs.djangoproject.com/en/1.5/topics/class-based-views/intro/#decorating-class-based-views]. There are
essentially two methods: decorating the URL configuration, and
decorating the class. I’ll show how to decorate the class.

Class based views have a dispatch() method that’s called when an
URL pattern matches. The dispatch() method looks up the
appropriate method on the class based on the HTTP method and then
calls it. Because we want to protect the views for all HTTP methods,
we’ll override and decorate that.

In contacts/views.py we’ll create a class mixin that ensures the
user is logged in.

from django.contrib.auth.decorators import login_required
from django.utils.decorators import method_decorator

class LoggedInMixin(object):

 @method_decorator(login_required)
 def dispatch(self, *args, **kwargs):
 return super(LoggedInMixin, self).dispatch(*args, **kwargs)

This is a mixin because it doesn’t provide a full implementation of
a view on its own; it needs to be mixed with another view to have an
effect.

Once we have it, we can add it to the class declarations in
contacts/views.py. Each view will have our new LoggedInMixin
added as the first superclass. For example, ListContactView will
look as follows.

class ListContactView(LoggedInMixin, ListView):

 model = Contact
 template_name = 'contact_list.html'

 def get_queryset(self):

 return Contact.objects.filter(owner=self.request.user)

Just as LOGIN_REDIRECT_URL tells Django where to send people
after they log in, there’s a setting to control where to send them
when they need to login. However, this can also be a view name, so
we don’t have to bake an explicit URL into the settings.

LOGIN_URL = 'django.contrib.auth.views.login'

Checking Ownership

Checking that you’re logged in is well and good, but to make this
suitable for multiple users we need to add the concept of ownership.
There are three steps for

	Record the Owner of each Contact

	Only show Contacts the logged in user owns in the list

	Set the Owner when creating a new one

First, we’ll go ahead and add the concept of an Owner to the Contact
model.

In contacts/models.py, we add an import and another field to our
model.

from django.contrib.auth.models import User
...
class Contact(models.Model):

 first_name = models.CharField(
 max_length=255,
)
 last_name = models.CharField(
 max_length=255,

)

 email = models.EmailField()

 owner = models.ForeignKey(User)

 def __str__(self):

 return ' '.join([
 self.first_name,
 self.last_name,
])

 def get_absolute_url(self):

 return reverse('contacts-view', kwargs={'pk': self.id})

Because Django doesn’t support migrations out of the box, we’ll need
to blow away the database and re-run syncdb.

XXX Perfect segue for talking about South

Now we need to limit the contact list to only the contacts the logged
in User owns. This gets us into overriding methods that the base view
classes have been handling for us.

For the list of Contacts, we’ll want to override the get_queryset
method, which returns the Django QuerySet [https://docs.djangoproject.com/en/1.6/ref/class-based-views/mixins-multiple-object/#django.views.generic.list.MultipleObjectMixin.get_queryset] of objects to be
displayed.

class ListContactView(LoggedInMixin, ListView):

 model = Contact
 template_name = 'contact_list.html'

 def get_queryset(self):

 return Contact.objects.filter(owner=self.request.user)

The remaining views are responsible for showing only a single object
– the Contact (or its addresses). For those we’ll create another
mixin that enforces authorization.

from django.core.exceptions import PermissionDenied
...
class ContactOwnerMixin(object):

 def get_object(self, queryset=None):
 """Returns the object the view is displaying.

 """

 if queryset is None:
 queryset = self.get_queryset()

 pk = self.kwargs.get(self.pk_url_kwarg, None)
 queryset = queryset.filter(
 pk=pk,
 owner=self.request.user,
)

 try:
 obj = queryset.get()
 except ObjectDoesNotExist:
 raise PermissionDenied

 return obj

ContactOwnerMixin overrides the get_object() method, which is
responsible for getting the object for a view to operate on. If it
can’t find one with the specified primary key and owner, it raises the
PermissionDenied exception.

Note

This implementation will return HTTP 403 (Forbidden) whenever it
cannot find the a Contact with the requested ID and owner. This
will mask legitimate 404 (Not Found) errors.

We’ll use the ContactOwnerMixin in all of our views. For example,
ContactView will look as follows:

class ContactView(LoggedInMixin, ContactOwnerMixin, DetailView):

 model = Contact
 template_name = 'contact.html'

Note that the order of inheritance is important: the superclasses
(LoggedInMixin, ContactOwnerMixin, DetailView) will be
checked in the order listed for methods. By placing LoggedInMixin
first, you’re guaranteed that by the time execution reaches
ContactOwnerMixin and DetailView, you have a logged in,
authenticated user.

Review

	XXX

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

Testing in Django

Testing Django

	There are Unit Tests and there are Integration tests

	Unit Tests should not rely on external services

	Unit Tests should be fast

Writing a Unit Test

	Django bundles unittest2 as django.utils.unittest

import django.http
import django.utils.unittest as unittest2

class LocaleMiddlewareTests(unittest2.TestCase):

 def test_request_not_processed(self):

 middleware = LocaleMiddle()
 response = django.http.HttpResponse()
 middleware.process_response(none, response)

 self.assertFalse(response.cookies)

Test Client

	Django TestClient acts like a browser. Sort of.

	Allows you to make a request against your application and inspect
the response

	The TestClient is slow (compared to plain unit tests)

from django.test.client import Client

c = Client()

response = c.get('/login')
self.assertEqual(response.status_code, 200)

response = c.post('/login/', {'username': 'john', 'password': 'smith'})

Request Factory

	Django 1.3 introduced RequestFactory, with an API similar to
Test Client

	Easy way to generate Request objects, which can be passed to
views

	Note that middleware is not run on these Requests

Running Tests

	Django only looks in apps with models.py for tests

$./manage.py test

	Easy to replace the test runner with something like nose if you
so desire

Further Reading

	Django Testing Documentation [https://docs.djangoproject.com/en/1.4/topics/testing/]

	Django 1.1 Testing & Debugging [http://www.packtpub.com/django-1-1-testing-and-debugging/book]

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

Understanding Middleware

Overview of Middleware

	Lightweight “plug-ins” for Django

	Allows modifying the Request or Response, or mutating the View
parameters

	Defined as a sequence (tuple) of classes in settings

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
)

Middleware Hooks

	Middleware classes have hooks for processing:
	request

	response

	view

	template_response

	exception

	Individual middleware may implement some or all

Typical Uses

	Sessions

	Authentication

	CSRF Protection

	GZipping Content

Middleware Example

class LocaleMiddleware(object):

 def process_request(self, request):

 if 'locale' in request.cookies:
 request.locale = request.cookies.locale
 else:
 request.locale = None

 def process_response(self, request, response):

 if getattr(request, 'locale', False):
 response.cookies['locale'] = request.locale

Request Middleware

	On ingress, middleware is executed in order

	Request middleware returns None to continue processing

	Returning an HttpResponse short circuits additional middleware

Response Middleware

	On egress, middleware is executed in reverse order

	Response middleware is executed even if corresponding request
middleware not executed

Writing Your Own

	Simple Python Classes

	Can implement all or part of the interface

	Middleware is long-lived

	The place for storing request-specific information is cunningly
named request

WSGI Middleware

	WSGI [http://wsgi.org] also defines a middleware interface

	The two have similar functions, but are not the same

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

Effective Django ORM

Configuring the Database

Writing Models

from django.db import models

class Address(models.Model):

 address = models.CharField(max_length=255, blank=True)
 city = models.CharField(max_length=150, blank=True)
 state = models.CharField(max_length=2, blank=True)
 zip = models.CharField(max_length=15, blank=True)

class Contact(models.Model):

 first_name = models.CharField(max_length=255, blank=True)
 last_name = models.CharField(max_length=255, blank=True)

 birthdate = models.DateField(auto_now_add=True)
 phone = models.CharField(max_length=25, blank=True)
 email = models.EMailField(blank=True)

 address = models.ForeignKey(Address, null=True)

Working with Models

nathan = Contact()
nathan.first_name = 'Nathan'
nathan.last_name = 'Yergler'
nathan.save()

What Goes in Models

	Models should encapsulate business logic

	Encourages testable, composable code

	If logic operates on a “set” of Models, put it in the Manager

Saving Data

	Starting in Django 1.5, calling .save() only updates the fields
that have changed.

	Prior to 1.5, .save() updated the entire model, making it easy
to overwrite changes

	django-dirtyfields [http://pypi.python.org/pypi/django-dirtyfields/] lets you track which fields have been changed
if you’re stuck on an older version of Django (but does not change
.save() behavior on its own)

Managers

	Models get a manager injected as .objects

	Managers allow you to operate over collections of your model

	Default manager emulates part of the QuerySet API for
convenience

Contact.objects.filter(last_name__iexact='yergler')
Contact.objects.filter(address__state='OH')

Custom Managers

	You can override the default Manager, or add additional ones

	Operations on sets of Model instances belongs here

	Subclass from models.Manager to get queryset emulation

class ContactManager(models.Manager):

 def with_email(self):
 return self.filter(email__ne = '')

class Contact(models.Model):
 ...

 objects = ContactManager()

contacts.objects.with_email().filter(email__endswith='osu.edu')

Low-level Managers

	Sometimes you want to heavily customize the manager without
re-implementing everything

	Manager.get_query_set()
allows you to customize the basic QuerySet used by Manager methods

Testing

What to Test

	Business logic methods

	Customized Manager methods

Writing a Test

def test_with_email():

 # make a couple Contacts
 Contact.objects.create(first_name='Nathan')
 Contact.objects.create(email='nathan@eventbrite.com')

 self.assertEqual(
 len(Contact.objects.with_email()), 1
)

Test Objects

	Creating objects for tests is time consuming

	Unnecessarily involves the database

	factory boy [http://pypi.python.org/pypi/factory_boy] provides an easy way to make model factories

FactoryBoy Example

import factory
from models import Contact

class ContactFactory(factory.Factory):
 FACTORY_FOR = Contact

 first_name = 'John'
 last_name = 'Doe'

Returns a Contact instance that's not saved
contact = ContactFactory.build()
contact = ContactFactory.build(last_name='Yergler')

Returns a saved Contact instance
contact = ContactFactory.create()

SubFactories for Related Objects

class AddressFactory(factory.Factory):
 FACTORY_FOR = Address

 contact = factory.SubFactory(ContactFactory)

address = AddressFactory(city='Columbus', state='OH')
address.contact.first_name

'John'

Querying Your Data

	Query Sets are chainable

Contact.objects.filter(state='OH').filter(email__ne='')

	Multiple filters are collapsed into SQL “and” conditions

OR conditions in Queries

If you need to do “or” conditions, you can use Q objects

from django.db.models import Q

Contact.objects.filter(
 Q(state='OH') | Q(email__endswith='osu.edu')
)

ORM Performance

Instantiation is Expensive

for user in Users.objects.filter(is_active=True):
 send_email(user.email)

	QuerySets are lazy, but have non-trivial overhead when evaluated

	If a query returns 1000s of rows, users will notice this

	.values() and .values_list() avoid instantiation

Avoiding Instantiation

user_emails = Users.objects.\
 filter(is_active=True).\
 values_list('email', flat=True)

for email in user_emails:
 send_email(email)

Traversing Relationships

	Traversing foreign keys can incur additional queries

	select_related queries for foreign keys in the initial query

Contact.objects.\
 select_related('address').\
 filter(last_name = 'Yergler')

Query Performance

	QuerySets maintain state in memory

	Chaining triggers cloning, duplicating that state

	Unfortunately, QuerySets maintain a lot of state

	If possible, don’t chain more than one filter

Falling Back to Raw SQL

	Django has to be database agnostic, you don’t

	Sometimes the clearest thing to do is write a SQL statement

	The .raw() method lets you do this

Contact.objects.raw('SELECT * FROM contacts WHERE last_name = %s', [lname])

	Must retrieve the primary key

	Omitted fields will be “deferred”

	DO NOT use string formatting in raw() calls

Other Manager Operations

Managers have some additional helpers for operating on the table or
collection:

	get_or_create

	update

	delete

	bulk_insert

Read Repeatable

MySQL’s default transaction isolation for InnoDB breaks
Django’s get_or_create when running at scale

def get_or_create(self, **kwargs):

 try:
 return self.get(**lookup), False
 except self.model.DoesNotExist:
 try:
 obj = self.model(**params)
 obj.save(force_insert=True, using=self.db)
 return obj, True
 except IntegrityError, e:
 try:
 return self.get(**lookup), False
 except self.model.DoesNotExist:
 raise e

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

Class Based Views

Class Based Views

	New in Django 1.3 (generic views)

	Allow “composing” a View from pieces

	Intended to allow more flexible reuse

	Base View plus a set of “mixins” provide composable functionality

	Lots of power, lots of [potential] complexity

Using Class Based Views

	Subclass View

	Define a method name that matches the HTTP method you’re
implementing

from django.views.generic import View

class ContactList(View):

 def get(self):

 return HttpResponse("You have no contacts")

Using a Template

from django.views.generic import TemplateView

class ContactList(TemplateView):

 template_name = 'index.html' # or define get_template_names()

 def get_context_data(self, **kwargs):

 context = super(ContactList, self).\
 get_context_data(**kwargs)
 context['first_names'] = ['Nathan', 'Richard']

 return context

Configuring URLs

	Django URLConf needs a callable, not a class

	View provides as as_view method

urlpatterns = patterns('',
 (r'^index/$', ContactList.as_view()),
)

	kwargs passed to as_view can override properties on the View
class

	Arguments captured in the URL pattern are available as .args and
.kwargs inside your class

Idiomatic Class Based Views

	Number of mixins can be confusing

	However there are a few common idioms

	Many times you don’t wind up defining the HTTP methods directly,
just the things you need

Template Views

TemplateView

	get_context_data()

	template_name, get_template_names()

	response_class

	render_to_response()

Forms in Views

ProcessFormView

	form_class

	get_success_url()

	form_valid(form)

	form_invalid(form)

Editing Views

CreateView, UpdateView

	Includes Form processing

	model

	get_object()

HTTP Methods

	The http_method_names property defines a list of supported
methods

	In Django 1.5 this is:

http_method_names = ['get', 'post', 'put', 'delete', 'head',
 'options', 'trace']

	If you want to support something like HTTP PATCH, you need to
add it to that list in your View subclass

	Views will look for a class method named for the HTTP method:
get() is called for GET, etc.

Writing Composable Views

	Think about the extension points you need

	Call super() in your methods: this allows others to mix your
View with others

Example

class EventsPageMixin(object):
 """View mixin to include the Event in template context."""

 def get_event(self):

 if not hasattr(self, 'event'):
 self.event = get_event()

 return self.event

 def get_context_data(self, **kwargs):

 context = super(EventsPageMixin, self).\
 get_context_data(**kwargs)

 context['event'] = self.get_event()

 return context

	No actual view logic

	Subclasses object, not View

	Calls super on overridden methods

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

Effective Django Forms

Form Basics

Forms in Context

	Views
	Convert Request to Response

	Forms
	Convert input to Python objects

	Models
	Data and business logic

Defining Forms

Forms are composed of fields, which have a widget.

from django.utils.translation import gettext_lazy as _
from django import forms

class ContactForm(forms.Form):

 name = forms.CharField(label=_("Your Name"),
 max_length=255,
 widget=forms.TextInput,
)

 email = forms.EmailField(label=_("Email address"))

Instantiating a Form

Unbound forms don’t have data associated with them, but they can
be rendered:

form = ContactForm()

Bound forms have specific data associated, which can be
validated:

form = ContactForm(data=request.POST, files=request.FILES)

Accessing Fields

Two ways to access fields on a Form instance

	form.fields['name'] returns the Field object

	form['name'] returns a BoundField

	BoundField wraps a field and value for HTML output

Initial Data

form = ContactForm(
 initial={
 'name': 'First and Last Name',
 },
)

>>> form['name'].value()
'First and Last Name'

Validation

Validating the Form

	Only bound forms can be validated

	Calling form.is_valid() triggers validation if needed

	Validated, cleaned data is stored in form.cleaned_data

	Calling form.full_clean() performs the full cycle

Field Validation

	Three phases for Fields: To Python, Validation, and Cleaning

	If validation raises an Error, cleaning is skipped

	Validators are callables that can raise a ValidationError

	Django includes generic ones for some common tasks

	Examples: URL, Min/Max Value, Min/Max Length, URL, Regex, email

Field Cleaning

	.clean_fieldname() method is called after validators

	Input has already been converted to Python objects

	Methods can raise ValidationErrors

	Methods must return the cleaned value

.clean_email()

class ContactForm(forms.Form):
 name = forms.CharField(
 label=_("Name"),
 max_length=255,
)

 email = forms.EmailField(
 label=_("Email address"),
)

 def clean_email(self):

 if (self.cleaned_data.get('email', '')
 .endswith('hotmail.com')):

 raise ValidationError("Invalid email address.")

 return self.cleaned_data.get('email', '')

Form Validation

	.clean() performs cross-field validation

	Called even if errors were raised by Fields

	Must return the cleaned data dictionary

	ValidationErrors raised by .clean() will be grouped in
form.non_field_errors() by default.

.clean() example

class ContactForm(forms.Form):
 name = forms.CharField(
 label=_("Name"),
 max_length=255,
)

 email = forms.EmailField(label=_("Email address"))
 confirm_email = forms.EmailField(label=_("Confirm"))

 def clean(self):
 if (self.cleaned_data.get('email') !=
 self.cleaned_data.get('confirm_email')):

 raise ValidationError("Email addresses do not match.")

 return self.cleaned_data

Initial != Default Data

	Initial data is used as a starting point

	It does not automatically propagate to cleaned_data

	Defaults for non-required fields should be specified when
accessing the dict:

self.cleaned_data.get('name', 'default')

Passing Extra Information

	Sometimes you need extra information in a form

	Pass as a keyword argument, and pop in __init__

class MyForm(forms.Form):
 def __init__(self, *args, **kwargs):
 self._user = kwargs.pop('user')
 super(MyForm, self).__init__(*args, **kwargs)

Tracking Changes

	Forms use initial data to track changed fields

	form.has_changed()

	form.changed_data

	Fields can render a hidden input with the initial value, as well:

>>> changed_date = forms.DateField(show_hidden_initial=True)
>>> print form['changed_date']
'<input type="text" name="changed_date" id="id_changed_date" /><input type="hidden" name="initial-changed_date" id="initial-id_changed_date" />'

Testing

Testing Forms

	Remember what Forms are for

	Testing strategies

	Initial states

	Field Validation

	Final state of cleaned_data

Unit Tests

import unittest

class FormTests(unittest.TestCase):
 def test_validation(self):
 form_data = {
 'name': 'X' * 300,
 }

 form = ContactForm(data=form_data)
 self.assertFalse(form.is_valid())

Test Data

from rebar.testing import flatten_to_dict

form_data = flatten_to_dict(ContactForm())
form_data.update({
 'name': 'X' * 300,
 })
form = ContactForm(data=form_data)
assert(not form.is_valid())

Rendering Forms

Idiomatic Form Usage

from django.views.generic.edit import FormMixin, ProcessFormView

class ContactView(FormMixin, ProcessFormView):
 form_class = ContactForm
 success_url = '/contact/sent'

 def form_valid(self, form):
 # do something -- save, send, etc
 pass

 def form_invalid(self, form):
 # do something -- log the error, etc -- if needed
 pass

Form Output

Three primary “whole-form” output modes:

	form.as_p(), form.as_ul(), form.as_table()

<tr><th><label for="id_name">Name:</label></th>
 <td><input id="id_name" type="text" name="name" maxlength="255" /></td></tr>
<tr><th><label for="id_email">Email:</label></th>
 <td><input id="id_email" type="text" name="email" maxlength="Email address" /></td></tr>
<tr><th><label for="id_confirm_email">Confirm email:</label></th>
 <td><input id="id_confirm_email" type="text" name="confirm_email" maxlength="Confirm" /></td></tr>

Controlling Form Output

{% for field in form %}
{{ field.label_tag }}: {{ field }}
{{ field.errors }}
{% endfor %}
{{ form.non_field_errors }}

Additional rendering properties:

	field.label

	field.label_tag

	field.html_name

	field.help_text

Customizing Rendering

You can specify additional attributes for widgets as part of the form
definition.

class ContactForm(forms.Form):
 name = forms.CharField(
 max_length=255,
 widget=forms.Textarea(
 attrs={'class': 'custom'},
),
)

You can also specify form-wide CSS classes to add for error and
required states.

class ContactForm(forms.Form):
 error_css_class = 'error'
 required_css_class = 'required'

Customizing Error Messages

Built in validators have default error messages

>>> generic = forms.CharField()
>>> generic.clean('')
Traceback (most recent call last):
 ...
ValidationError: [u'This field is required.']

error_messages lets you customize those messages

>>> name = forms.CharField(
... error_messages={'required': 'Please enter your name'})
>>> name.clean('')
Traceback (most recent call last):
 ...
ValidationError: [u'Please enter your name']

Error Class

	ValidationErrors raised are wrapped in a class

	This class controls HTML formatting

	By default, ErrorList is used: outputs as

	Specify the error_class kwarg when constructing the form to
override

Error Class

from django.forms.util import ErrorList

class ParagraphErrorList(ErrorList):
 def __unicode__(self):
 return self.as_paragraphs()

 def as_paragraphs(self):
 return "<p>%s</p>" % (
 ",".join(e for e in self.errors)
)

form = ContactForm(data=form_data, error_class=ParagraphErrorList)

Multiple Forms

Avoid potential name collisions with prefix:

contact_form = ContactForm(prefix='contact')

Adds the prefix to HTML name and ID:

<tr><th><label for="id_contact-name">Name:</label></th>
 <td><input id="id_contact-name" type="text" name="contact-name"
 maxlength="255" /></td></tr>
<tr><th><label for="id_contact-email">Email:</label></th>
 <td><input id="id_contact-email" type="text" name="contact-email"
 maxlength="Email address" /></td></tr>
<tr><th><label for="id_contact-confirm_email">Confirm
 email:</label></th>
 <td><input id="id_contact-confirm_email" type="text"
 name="contact-confirm_email" maxlength="Confirm" /></td></tr>

Forms for Models

Model Forms

	ModelForms map a Model to a Form

	Validation includes Model validators by default

	Supports creating and editing instances

	Key differences from Forms:
	A field for the Primary Key (usually id)

	.save() method

	.instance property

Model Forms

from django.db import models
from django import forms

class Contact(models.Model):
 name = models.CharField(max_length=100)
 email = models.EmailField()
 notes = models.TextField()

class ContactForm(forms.ModelForm):
 class Meta:
 model = Contact

Limiting Fields

	You don’t need to expose all the fields in your form

	You can either specify fields to expose, or fields to exclude

class ContactForm(forms.ModelForm):

 class Meta:
 model = Contact
 fields = ('name', 'email',)

class ContactForm(forms.ModelForm):

 class Meta:
 model = Contact
 exclude = ('notes',)

Overriding Fields

	Django will generate fields and widgets based on the model

	These can be overridden, as well

class ContactForm(forms.ModelForm):

 name = forms.CharField(widget=forms.TextInput)

 class Meta:
 model = Contact

Instantiating Model Forms

model_form = ContactForm()

model_form = ContactForm(
 instance=Contact.objects.get(id=2)
)

ModelForm.is_valid()

	Model Forms have an additional method, _post_clean()

	Sets cleaned fields on the Model instance

	Called regardless of whether the form is valid

Testing

class ModelFormTests(unittest.TestCase):
 def test_validation(self):
 form_data = {
 'name': 'Test Name',
 }

 form = ContactForm(data=form_data)
 self.assert_(form.is_valid())
 self.assertEqual(form.instance.name, 'Test Name')

 form.save()

 self.assertEqual(
 Contact.objects.get(id=form.instance.id).name,
 'Test Name'
)

Form Sets

Form Sets

	Handles multiple copies of the same form

	Adds a unique prefix to each form:

form-1-name

	Support for insertion, deletion, and ordering

Defining Form Sets

from django.forms import formsets

ContactFormSet = formsets.formset_factory(
 ContactForm,
)

formset = ContactFormSet(data=request.POST)

Factory kwargs:

	can_delete

	extra

	max_num

Using Form Sets

<form action=”” method=”POST”>
{% formset %}
</form>

Or more control over output:

<form action=”.” method=”POST”>
{% formset.management_form %}
{% for form in formset %}
 {% form %}
{% endfor %}
</form>

Management Form

	formset.management_form provides fields for tracking the member
forms
	TOTAL_FORMS

	INITIAL_FORMS

	MAX_NUM_FORMS

	Management form data must be present to validate a Form Set

formset.is_valid()

	Performs validation on each member form

	Calls .clean() method on the FormSet

	formset.clean() can be overridden to validate across Forms

	Errors raised are collected in formset.non_form_errors()

FormSet.clean()

from django.forms import formsets

class BaseContactFormSet(formsets.BaseFormSet):
 def clean(self):
 names = []
 for form in self.forms:
 if form.cleaned_data.get('name') in names:
 raise ValidationError()
 names.append(form.cleaned_data.get('name'))

ContactFormSet = formsets.formset_factory(
 ContactForm,
 formset=BaseContactFormSet
)

Insertion

	FormSets use the management_form to determine how many forms to
build

	You can add more by creating a new form and incrementing
TOTAL_FORM_COUNT

	formset.empty_form provides an empty copy of the form with
__prefix__ as the index

Deletion

	When deletion is enabled, additional DELETE field is added to
each form

	Forms flagged for deletion are available using the
.deleted_forms property

	Deleted forms are not validated

ContactFormSet = formsets.formset_factory(
 ContactForm, can_delete=True,
)

Ordering Forms

	When ordering is enabled, additional ORDER field is added to
each form

	Forms are available (in order) using the .ordered_forms property

ContactFormSet = formsets.formset_factory(
 ContactForm,
 can_order=True,
)

Testing

	FormSets can be tested in the same way as Forms

	Helpers to generate test form data:
	flatten_to_dict works with FormSets just like Forms

	empty_form_data takes a FormSet and index, returns a dict of data
for an empty form:

from rebar.testing import flatten_to_dict, empty_form_data

formset = ContactFormSet()
form_data = flatten_to_dict(formset)
form_data.update(
 empty_form_data(formset, len(formset))
)

Model Form Sets

	ModelFormSets:FormSets :: ModelForms:Forms

	queryset argument specifies initial set of objects

	.save() returns the list of saved instances

	If can_delete is True, .save() also deletes the models
flagged for deletion

Advanced & Miscellaneous Detritus

Localizing Fields

	Django’s i18n/l10n framework supports localized input formats

	For example: 10,00 vs. 10.00

Enable in settings.py:

USE_L10N = True
USE_THOUSAND_SEPARATOR = True # optional

Localizing Fields Example

And then use the localize kwarg

>>> from django import forms
>>> class DateForm(forms.Form):
... pycon_ends = forms.DateField(localize=True)

>>> DateForm({'pycon_ends': '3/15/2012'}).is_valid()
True
>>> DateForm({'pycon_ends': '15/3/2012'}).is_valid()
False

>>> from django.utils import translation
>>> translation.activate('en_GB')
>>> DateForm({'pycon_ends':'15/3/2012'}).is_valid()
True

Dynamic Forms

	Declarative syntax is just sugar

	Forms use a metaclass to populate form.fields

	After __init__ finishes, you can manipulate form.fields
without impacting other instances

State Validators

	Validation isn’t necessarily all or nothing

	State Validators define validation for specific states, on top of
basic validation

	Your application can take action based on whether the form is valid,
or valid for a particular state

State Validators

from django import forms
from rebar.validators import StateValidator, StateValidatorFormMixin

class PublishValidator(StateValidator):
 validators = {
 'title': lambda x: bool(x),
 }

class EventForm(StateValidatorFormMixin, forms.Form):
 state_validators = {
 'publish': PublishValidator,
 }
 title = forms.CharField(required=False)

State Validators

>>> form = EventForm(data={})
>>> form.is_valid()
True
>>> form.is_valid('publish')
False
>>> form.errors('publish')
{'title': 'This field is required'}

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Effective Django

Acknowledgments

It would have been impossible to put Effective Django together with
lots and lots of help. Thanks to PyCon [http://us.pycon.org/2012] and PyOhio [http://pyohio.org/] for allowing me to
speak about these topics and develop the material. Thanks to
Eventbrite [http://www.eventbrite.com] for supporting my work in this area, and generally just
being an awesome place to work.

Effective Django would have been opaque, disjointed, and confusing
without feedback and patience from early reviewers: Tamara Chu,
Brandon L. Golm, Jason Herbst, Philip John James, Galen Krumel,
Allison Lacker, Sanby Lee, Karl Mendes, Nam-Chi Van, Nicole Zuckerman,
and Madeline [http://yergler.net/madeline].

Thanks for reading this far. If you have feedback, comments, or
suggestions, please feel free to email them to me: nathan@yergler.net.
Or find me on identi.ca [http://identi.ca/nyergler] or Twitter [http://twitter.com/nyergler] as @nyergler.

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 Navigation

 	
 previous

 	Effective Django

Further Reading

	Django Doesn’t Scale [http://www.oscon.com/oscon2012/public/schedule/detail/24030], by Jacob Kaplan Moss

 Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

 _images/blockdiag-0cbbf8b8e1d96bb23a053d6006b8e38e409e9312.png

_images/blockdiag-2e80d332ab3c2eb1255317bfbefa7e0f7d89ecf2.png
for each Field b Fielaclem >{ Field to_python >{ Field validators

Lpl cleam_eietamaner)

_images/TemplateDoesNotExist.png
TemplateDoesNotExist at / = Google Chrome
] TemplateDoesNotExist i x

G «» G | [tocalhost

TemplateDoesNotExist at /
contacts/contact_list.html

Request Method: GET
Request URL: http//localnost:8000/

Django Ver 143

Exception Type: TemplateDoesNotExist

Exception Value: contacts/contact_list.htal
Exception Location: /home/nathan/p/contacts/lib/python2.7/site-packages/django/template/loader py in select_template, line 193
Python Executable: /home/nathan/p/contacts/bin/python

Python Ver: 273

Python Path: ['/hone/nathan/p/contacts/contactngr ',
 7hone /nathan/p/contacts/1b/python2. 7/site-packages/setuptools-0. 6c11-py2.7. 299",

 7hone /nathan/p/contacts/11b/python2. 7/site-packages/pip-1.1-py2.7.e9"
 7hone /nathan/p/contacts/11b64/python27 zip",
 7hone /nathan/p/contacts/11b64/python2. 7",
*7hone/nathan/p/contacts/11b64/python2. 7/plat -Linux2',
*7hone/nathan/p/contacts/11b64/python2. 7/1ib-tk ",
*7hone/nathan/p/contacts/11b64/python2. 7/11b-old’ ,
*7hone/nathan/p/contacts/11b64/python2. 7/1b-dynload" ,
*7usr/1ib/python2.7"
*7usr/1ib6a/python2. 7',
* /hone /nathan/p/contacts/1ib/python2. 7/site-packages']

me: Thu, 7 Feb 2013 12:30:54 -0600

Server

Template-loader postmortem

Django tried loading these templates, in this order.
© Using loader django . tenplate . loaders. filesysten. Loader:
 Using loader django . tenplate . loaders . app_directories. Loader:

o /hone/nathan/p/contacts/Lib/python2. 7/site-packages/django/cont rib/auth/tenplates/contacts/contact_List .htal (File does not exist)

Traceback suwitch to copy-and-past

/hone/nathan/p/contacts/Lib/python2. 7/site-packages/django/core/handlers/base py in get_response
136 response = response. render ()

» Local vars

L

oo

_images/authz-login-pagenotfound.png
€« C n AIocalhost:8000/accounts/proﬁle/

T Do you want Google Chrome to save your password?

Page not found (404)

Request Method: GET
Request URL: http:/localhost:8000/accounts/profile/

Using the URLconf defined in addressbook.urls, Django tried these URL patterns, in this order:

1. "login/$

2. "logout/$

3. "$ [name='contacts-list']

4. " (?P<pk>\d+)/$ [name='contacts-view']

5. “new$ [name='contacts-new']

6. “edit/(?P<pk>\d+)/$ [name='contacts-edit']

7. “edit/(?P<pk>\d+)/addresses$ [name='contacts-edit-addresses']
8. “delete/(?P<pk>\d+)/$ [name='contacts-delete']

9. “static\/(?P<path>.*)$

The current URL, accounts/profile/, didn't match any of these.

You're seeing this error because you have DEBUG = True in your Django settings file. Change that to False, and Django will display a standard 404 page.

_images/blockdiag-b74426358eb51d81135e27e9ee8e2768801053fc.png

_images/boostrapped.png
o Aurora

Add Contact

® First name:
.]
® Last name:
()

 Email:

Save|

back to list

_images/blockdiag-52466740a7832df455c5ee78913e40f1dbfdfb8a.png
ey BN s

_images/blockdiag-6b527a1f0e3e41f29ee340fb73197a9ab36c5cd7.png

_static/ajax-loader.gif

search.html

 Navigation

 		Effective Django »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

_static/building.jpg

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/eb_logo.gif

_static/diving.jpg

_static/down-pressed.png

_static/eb_logo_bw.png

_static/file.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/tutorial/authz-login-pagenotfound.png
€« C n AIocalhost:8000/accounts/proﬁle/

T Do you want Google Chrome to save your password?

Page not found (404)

Request Method: GET
Request URL: http:/localhost:8000/accounts/profile/

Using the URLconf defined in addressbook.urls, Django tried these URL patterns, in this order:

1. "login/$

2. "logout/$

3. "$ [name='contacts-list']

4. " (?P<pk>\d+)/$ [name='contacts-view']

5. “new$ [name='contacts-new']

6. “edit/(?P<pk>\d+)/$ [name='contacts-edit']

7. “edit/(?P<pk>\d+)/addresses$ [name='contacts-edit-addresses']
8. “delete/(?P<pk>\d+)/$ [name='contacts-delete']

9. “static\/(?P<path>.*)$

The current URL, accounts/profile/, didn't match any of these.

You're seeing this error because you have DEBUG = True in your Django settings file. Change that to False, and Django will display a standard 404 page.

_static/tutorial/boostrapped.png
o Aurora

Add Contact

® First name:
.]
® Last name:
()

 Email:

Save|

back to list

_static/up.png

_static/tutorial/TemplateDoesNotExist.png
TemplateDoesNotExist at / = Google Chrome
] TemplateDoesNotExist i x

G «» G | [tocalhost

TemplateDoesNotExist at /
contacts/contact_list.html

Request Method: GET
Request URL: http//localnost:8000/

Django Ver 143

Exception Type: TemplateDoesNotExist

Exception Value: contacts/contact_list.htal
Exception Location: /home/nathan/p/contacts/lib/python2.7/site-packages/django/template/loader py in select_template, line 193
Python Executable: /home/nathan/p/contacts/bin/python

Python Ver: 273

Python Path: ['/hone/nathan/p/contacts/contactngr ',
 7hone /nathan/p/contacts/1b/python2. 7/site-packages/setuptools-0. 6c11-py2.7. 299",

 7hone /nathan/p/contacts/11b/python2. 7/site-packages/pip-1.1-py2.7.e9"
 7hone /nathan/p/contacts/11b64/python27 zip",
 7hone /nathan/p/contacts/11b64/python2. 7",
*7hone/nathan/p/contacts/11b64/python2. 7/plat -Linux2',
*7hone/nathan/p/contacts/11b64/python2. 7/1ib-tk ",
*7hone/nathan/p/contacts/11b64/python2. 7/11b-old’ ,
*7hone/nathan/p/contacts/11b64/python2. 7/1b-dynload" ,
*7usr/1ib/python2.7"
*7usr/1ib6a/python2. 7',
* /hone /nathan/p/contacts/1ib/python2. 7/site-packages']

me: Thu, 7 Feb 2013 12:30:54 -0600

Server

Template-loader postmortem

Django tried loading these templates, in this order.
© Using loader django . tenplate . loaders. filesysten. Loader:
 Using loader django . tenplate . loaders . app_directories. Loader:

o /hone/nathan/p/contacts/Lib/python2. 7/site-packages/django/cont rib/auth/tenplates/contacts/contact_List .htal (File does not exist)

Traceback suwitch to copy-and-past

/hone/nathan/p/contacts/Lib/python2. 7/site-packages/django/core/handlers/base py in get_response
136 response = response. render ()

» Local vars

L

oo

_static/tutorial/confirm_email.png
& «» @& [D tocalhost:8000/ne
Add Contact

« First name: —]
© Last name; —]

‘back to list

tutorial/before.html

 Navigation

 		Effective Django »

Before You Arrive

Thanks for signing up to attend my tutorial, Effective Django. To
help things get started smoothly, and avoid possible network issues,
please complete the following beforehand.

If you have questions, you can email me at nathan@yergler.net. If you
have platform specific issues, I’ll try and help you figure them out,
and will update this document with any notes.

		Install Python

I’ll be using Python 2.7; you can download it from the official
Python website: http://python.org/download/releases/2.7.5/

The latest release of 2.7 is 2.7.5. If you already have 2.7.x
installed, that will work fine.

		Install virtualenv and pip

virtualenv is a tool for managing your Python environments. It
includes pip, a Python package installer, which we’ll use to
retrieve dependencies.

You can download virtualenv from PyPI [https://pypi.python.org/pypi/virtualenv] at
https://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.9.1.tar.gz

After downloading, unpack the archive and run:

$ python setup.py install

You may need to run with sudo depending on your system:

$ sudo python setup.py install

		Create a working directory for the tutorial, and make it a virtualenv

You can create this directory anywhere, but this is where we’ll be
working on code during the tutorial. For example:

$ cd Documents
$ mkdir django-tutorial

Once you’ve created the directory, create a virtualenv there:

$ virtualenv ./django-tutorial

		Active the virtualenv

On Linux and Mac OS X you can active the virtualenv by running the
following from the command-line:

$ cd django-tutorial
$ source bin/activate

On Windows you do:

> cd django-tutorial
> \Scripts\activate

The virtualenv documentation [http://www.virtualenv.org/en/latest/#activate-script] may be useful if you have trouble activating.

		Install Django

We’ll talk about versions of Django during the tutorial, but in
order to avoid network bottlenecks from dozens of people in one
room downloading the source, it’s helpful to install it into your
virtualenv beforehand:

$ pip install Django

This will download Django and install it into the virtualenv. Once
it’s installed, you should see a django-admin.py script in the
bin (Linux, Mac OS X) or Scripts (Windows) directory.

If you have questions, you can email me at nathan@yergler.net. If you
have platform specific issues, I’ll try and help you figure them out,
and will update this document with any notes.

See you at the tutorial!

Nathan

 © Copyright 2012-2013, Nathan Yergler.
 Created using Sphinx 1.3.1.

